Recent epidemiological reports showed that smoking has a negative impact on renal function and elevates the renal risk not only in the renal patient but perhaps also in the healthy population. Studies suggested that nicotine, a major tobacco alkaloid, links smoking to renal dysfunction. While several studies showed that smoking/chronic nicotine exposure exacerbates the progression of chronic renal diseases, its impact on acute kidney injury is virtually unknown. Here, we studied the effects of chronic nicotine exposure on acute renal ischemic injury. We found that chronic nicotine exposure increased the extent of renal injury induced by warm ischemia-reperfusion as evidenced by morphological changes, increase in plasma creatinine level, and kidney injury molecule-1 expression. We also found that chronic nicotine exposure elevated markers of oxidative stress such as nitrotyrosine as well as malondialdehyde. Interestingly, chronic nicotine exposure alone increased oxidative stress and injury in the kidney without morphological alterations. Chronic nicotine treatment not only increased reactive oxygen species (ROS) production and injury but also exacerbated oxidative stress-induced ROS generation through NADPH oxidase and mitochondria in cultured renal proximal tubule cells. The resultant oxidative stress provoked injury through JNK-mediated activation of the activator protein (AP)-1 transcription factor in vitro. This mechanism might exist in vivo as phosphorylation of JNK and its downstream target c-jun, a component of the AP-1 transcription factor, is elevated in the ischemic kidneys exposed to chronic nicotine. Our results imply that smoking may sensitize the kidney to ischemic insults and perhaps facilitates progression of acute kidney injury to chronic kidney injury.
Recent in vitro studies have reported that heme oxygenase-1 (HO-1) downregulates the angiostatic protein sFlt-1 from placental villous explants and that the HO-1 metabolites CO and bilirubin negatively regulates endothelin-1 and reactive oxygen species (ROS). Although sFlt-1, ET-1, and ROS have been implicated in the pathophysiology of hypertension during preeclampsia and in response to placental ischemia in pregnant rats, it is unknown whether chronic induction of HO-1 alters the hypertensive response to placental ischemia. The present study examined the hypothesis that HO-1 induction in a rat model of placental ischemia would beneficially affect blood pressure, angiogenic balance, superoxide, and ET-1 production in the ischemic placenta. To achieve this goal we examined the effects of cobalt protoporphyrin (CoPP), an HO-1 inducer, in the reduced uterine perfusion pressure (RUPP) placental ischemia model and in normal pregnant rats. In response to RUPP treatment, MAP increases 29mmHg (136 ± 7 vs. 106 ± 5 mmHg) which is significantly attenuated by CoPP (118 ± 5 mmHg). While RUPP treatment causes placental sFlt-1/VEGF ratios to alter significantly to an angiostatic balance (1 ± 0.1 vs 1.27 ± 0.2,), treatment with CoPP causes a significant shift in the ratio to an angiogenic balance (0.68 ± 0.1). Placental superoxide increased in RUPP (952.5 ± 278.8 vs 243.9 ± 70.5 RLU/min/mg), but was significantly attenuated by HO-1 induction (482.7 ± 117.4 RLU/min/mg). Also, preproendothelin message was significantly increased in RUPP, which was prevented by CoPP. These data indicate that HO-1, or its metabolites, are potential therapeutics for the treatment of preeclampsia.
ObjectiveHeme oxygenase-1 induction (HO-1) elicits chronic weight loss in several rodent models of obesity. Despite these findings, the mechanism by which HO-1 induction reduces body weight is unclear. Chronic HO-1 induction does not alter food intake suggesting other mechanisms such as increases in metabolism and activity may be responsible for the observed reduction of body weight. In this study, we investigated the mechanism of weight loss elicited by chronic HO-1 induction in a model of genetic obesity due to melanocortin-4 receptor (MC4R) deficiency.DesignExperiments were performed on loxTB MC4R deficient mice as well as lean controls. Mice were administered cobalt protoporphyrin (CoPP, 5 mg/kg), an inducer of HO-1, once weekly from 4 to 23 weeks of age. Body weights were measured weekly and fasted blood glucose and insulin as well as food intake were determined at 18 weeks of age. O2 consumption, CO2 production, activity, and body heat production were measured at 20 weeks of age.ResultsChronic CoPP treatment resulted in a significant decrease in body weight from 5 weeks on in loxTB mice. Chronic CoPP treatment resulted in a significant decrease in fasted blood glucose levels, plasma insulin, and a significant increase in plasma adiponectin levels in MC4R deficient mice. Chronic CoPP treatment increased O2 consumption (47 ± 4 vs. 38 ± 3 ml/kg/min, P<0.05) and CO2 production (44 ± 7 vs. 34 ± 4 ml/kg/min, P<0.05) in treated versus non-treated, MC4R deficient mice (n=4). Heat production (10%) and activity (18%) were also significantly (P<0.05) increased in CoPP treated MC4R deficient mice.ConclusionOur results suggest that chronic HO-1 induction with CoPP induction elicits weight loss by increasing metabolism and activity by an MC4R independent pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.