BackgroundHabitat types can affect vector and pathogen distribution and transmission dynamics. The prevalence and genetic diversity of Plasmodium spp. in two eastern chimpanzee populations—Kalinzu Forest Reserve, Uganda and Issa Valley, Tanzania—inhabiting different habitat types was investigated. As a follow up study the effect of host sex and age on infections patterns in Kalinzu Forest Reserve chimpanzees was determined.MethodsMolecular methods were employed to detect Plasmodium DNA from faecal samples collected from savanna-woodland (Issa Valley) and forest (Kalinzu Forest Reserve) chimpanzee populations.ResultsBased on a Cytochrome-b PCR assay, 32 out of 160 Kalinzu chimpanzee faecal samples were positive for Plasmodium DNA, whilst no positive sample was detected in 171 Issa Valley chimpanzee faecal samples. Sequence analysis revealed that previously known Laverania species (Plasmodium reichenowi, Plasmodium billbrayi and Plasmodium billcollinsi) are circulating in the Kalinzu chimpanzees. A significantly higher proportion of young individuals were tested positive for infections, and switching of Plasmodium spp. was reported in one individual. Amongst the positive individuals sampled more than once, the success of amplification of Plasmodium DNA from faeces varied over sampling time.ConclusionThe study showed marked differences in the prevalence of malaria parasites among free ranging chimpanzee populations living in different habitats. In addition, a clear pattern of Plasmodium infections with respect to host age was found. The results presented in this study contribute to understanding the ecological aspects underlying the malaria infections in the wild. Nevertheless, integrative long-term studies on vector abundance, Plasmodium diversity during different seasons between sites would provide more insight on the occurrence, distribution and ecology of these pathogens.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-016-1476-2) contains supplementary material, which is available to authorized users.
Adenoviruses are a widespread cause of diverse human infections with recently confirmed zoonotic roots in African great apes. We focused on savanna-dwelling chimpanzees in the Issa Valley (Tanzania), which differ from those from forested sites in many aspects of behavior and ecology. PCR targeting the DNA polymerase gene detected AdV in 36.7% (69/188) of fecal samples. We detected five groups of strains belonging to the species Human mastadenovirus E and two distinct groups within the species Human mastadenovirus C based on partial hexon sequence. All detected AdVs from the Issa Valley are related to those from nearby Mahale and Gombe National Parks, suggesting chimpanzee movements and pathogen transmission.
Human parvovirus 4 (PARV4, family Parvoviridae, genus Tetraparvovirus) displays puzzling features, such as uncertain clinical importance/significance, unclear routes of transmission and discontinuous geographical distribution. The origin, or the general reservoir, of human PARV4 infection is unknown. We aimed to detect and characterize PARV4 virus in faecal samples collected from two wild chimpanzee populations and 19 species of captive nonhuman primates. We aimed to investigate these species as a potential reservoir and alternate route of transmission on the African continent. From almost 500 samples screened, a single Manuscript Click here to access/download;Manuscript;PARV4_R1_040918.docx Click here to view linked References
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.