BackgroundSexual cannibalism may be a form of extreme sexual conflict in which females benefit more from feeding on males than mating with them, and males avoid aggressive, cannibalistic females in order to increase net fitness. A thorough understanding of the adaptive significance of sexual cannibalism is hindered by our ignorance of its prevalence in nature. Furthermore, there are serious doubts about the food value of males, probably because most studies that attempt to document benefits of sexual cannibalism to the female have been conducted in the laboratory with non-natural alternative prey. Thus, to understand more fully the ecology and evolution of sexual cannibalism, field experiments are needed to document the prevalence of sexual cannibalism and its benefits to females.Methodology/Principal FindingsWe conducted field experiments with the Mediterranean tarantula (Lycosa tarantula), a burrowing wolf spider, to address these issues. At natural rates of encounter with males, approximately a third of L. tarantula females cannibalized the male. The rate of sexual cannibalism increased with male availability, and females were more likely to kill and consume an approaching male if they had previously mated with another male. We show that females benefit from feeding on a male by breeding earlier, producing 30% more offspring per egg sac, and producing progeny of higher body condition. Offspring of sexually cannibalistic females dispersed earlier and were larger later in the season than spiderlings of non-cannibalistic females.Conclusions/SignificanceIn nature a substantial fraction of female L. tarantula kill and consume approaching males instead of mating with them. This behaviour is more likely to occur if the female has mated previously. Cannibalistic females have higher rates of reproduction, and produce higher-quality offspring, than non-cannibalistic females. Our findings further suggest that female L. tarantula are nutrient-limited in nature and that males are high-quality prey. The results of these field experiments support the hypothesis that sexual cannibalism is adaptive to females.
BackgroundAnimals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities.Methodology/Principal FindingsWe tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders).Conclusions/SignificanceSeveral lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since they could partially explain the occurrence of foraging plasticity and dispersal constraints as well as the evolution of sexual size dimorphism and sociality.
Human activity and specifically tourism has been increasing in Antarctica over the last few years. Few studies have examined the indirect effects of human visits on Antarctic penguin rookeries. This work aims to study the differences between a highly visited (Hannah Point) and a rarely visited (Devil's Point, Byers Peninsula) gentoo penguin rookery on Livingston Island. Our results suggest that potential indirect effects of human impact are observed in gentoo penguins at Hannah Point, a colony heavily visited by tourists. Penguins at Hannah Point showed a higher presence of heavy metals such as Pb and Ni and a higher number of erythrocytic nuclear abnormalities than penguins at Devil's Point. Immunological parameters showed different results depending on whether we consider the cellular response -the number of lymphocytes being higher in penguins from Hannah Point -or the humoral response -the level of immunoglobulins being higher in penguins from Devil's Point. Measurements of corticosterone levels in feathers and heterophil/lymphocyte (H/L) ratio in blood showed lower levels in the heavily visited rookery than in the rarely visited rookery. Finally, we did not detect Campylobacter jejuni, a bacteria potentially transmitted by humans in either of the populations and we did not find any difference in the prevalence of Campylobacter lari between the populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.