This study evaluates the utility of DNA barcoding to traditional morphology-based species identifications for the fish fauna of the north-eastern Congo basin. We compared DNA sequences (COI) of 821 samples from 206 morphologically identified species. Best match, best close match and all species barcoding analyses resulted in a rather low identification success of 87.5%, 84.5% and 64.1%, respectively. The ratio 'nearest-neighbour distance/maximum intraspecific divergence' was lower than 1 for 26.1% of the samples, indicating possible taxonomic problems. In ten genera, belonging to six families, the number of species inferred from mtDNA data exceeded the number of species identified using morphological features; and in four cases indications of possible synonymy were detected. Finally, the DNA barcodes confirmed previously known identification problems within certain genera of the Clariidae, Cyprinidae and Mormyridae. Our results underscore the large number of taxonomic problems lingering in the taxonomy of the fish fauna of the Congo basin and illustrate why DNA barcodes will contribute to future efforts to compile a reliable taxonomic inventory of the Congo basin fish fauna. Therefore, the obtained barcodes were deposited in the reference barcode library of the Barcode of Life Initiative.
This study highlights the value of museum collections in invasion biology. It focuses on introduced tilapias, Oreochromis niloticus and Coptodon rendalli in the Congo Basin and their monogenean (Platyhelminthes) gill parasite fauna. Oreochromis niloticus was introduced throughout the Congo Basin while C. rendalli was introduced into the Lower Congo, but is native to the Middle and Upper Congo. In order to study the impact of these stocking events on the native parasite community we investigate the co-introduction and host switching of their parasites. Post-introduction material is compared with pre-introduction samples from museum collections of 5 native tilapias in the Congo basin. Nine of the known parasites of O. niloticus were co-introduced, while one, Cichlidogyrus rognoni, is missing and possibly not established. In contrast, no parasite species were found co-introduced with C. rendalli into the Lower Congo. The parasite fauna of Tilapia sparrmanii shared no species with O. niloticus. Oreochromis mweruensis shared five species with O. niloticus, but these were also found on the pre-introduction samples, and are considered native to both hosts. We report three putative host switches: Cichlidogyrus sclerosus and Cichlidogyrus tilapiae to Coptodon tholloni in the Lower Congo Basin and Gyrodactylus nyanzae to Coptodon rendalli in the Upper Congo.
The Lower Congo Basin is characterized by a mangrove-lined estuary at its mouth and, further upstream, by many hydrogeographical barriers such as rapids and narrow gorges. Five localities in the mangroves and four from (upstream) left bank tributaries or pools were sampled. On the gills of Coptodon tholloni, Coptodon rendalli, Hemichromis elongatus, Hemichromis stellifer and Tylochromis praecox, 17 species of parasites (Dactylogyridae & Gyrodactylidae, Monogenea) were found, eight of which are new to science. Six of these are herein described: Cichlidogyrus bixlerzavalai n. sp. and Cichlidogyrus omari n. sp. from T. praecox, Cichlidogyrus calycinus n. sp. and Cichlidogyrus polyenso n. sp. from H. elongatus, Cichlidogyrus kmentovae n. sp. from H. stellifer and Onchobdella ximenae n. sp. from both species of Hemichromis. On Cichlidogyrus reversati a ridge on the accessory piece was discovered that connects to the basal bulb of the penis. We report a putative spillback effect of the native parasites Cichlidogyrus berradae, Cichlidogyrus cubitus and Cichlidogyrus flexicolpos from C. tholloni to the introduced C. rendalli. From our results, we note that the parasite fauna of Lower Congo has a higher affinity with the fauna of West African and nearby freshwater ecoregions than it has with fauna of other regions of the Congo Basin and Central Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.