Apolipoprotein D (Apo D) is a secreted lipocalin in the nervous system that may be related to processes of reinnervation and regeneration. Under normal conditions, Apo D is present in the central nervous system in oligodendrocytes, astrocytes, and some scattered neurons. To elucidate the regional and cellular distribution of Apo D in normal human brain, we performed double immunohistochemistry for glial fibrillary acidic protein (GFAP) and Apo D in samples of postmortem human cerebral and cerebellar cortices. Most of the GFAP-positive cells in the gray matter had features of protoplasmic astrocytes and were mainly Apo D-positive. Apo D staining was mostly confined to the cell soma and proximal processes, whereas GFAP extended to a rich and extensive array of processes. The fibrous astrocytes in the white matter were immunoreactive for GFAP but not for Apo D. In the white matter, Apo D was mainly detected in oligodendrocytes and extracellularly in the neuropil. The results of the present study support a specific behavior for each astrocyte type. These findings suggest that Apo D expression may be cell-specific, depending on the particular tissue physiology at the time of examination.
Background: Learning processes or language development are only some of the cognitive functions that differ qualitatively between men and women. Gender differences in the brain structure seem to be behind these variations. Indeed, this sexual dimorphism at neuroanatomical level is accompanied unequivocally by differences in the way that aging and neurodegenerative diseases affect men and women brains.Objective: The aim of this study is the analysis of neuronal density in four areas of the hippocampus, and entorhinal and frontal cortices to analyze the possible gender influence during normal aging and in Alzheimer's disease (AD).Methods: Human brain tissues of different age and from both sexes, without neurological pathology and with different Braak's stages of AD, were studied. Neuronal density was quantified using the optical dissector.Results: Our results showed the absence of a significant neuronal loss during aging in non-pathological brains in both sexes. However, we have demonstrated specific punctual significant variations in neuronal density related with the age and gender in some regions of these brains. In fact, we observed a higher neuronal density in CA3 and CA4 hippocampal areas of non-pathological brains of young men compared to women. During AD, we observed a negative correlation between Braak's stages and neuronal density in hippocampus, specifically in CA1 for women and CA3 for men, and in frontal cortex for both, men and women.Conclusion: Our data demonstrated a sexual dimorphism in the neuronal vulnerability to degeneration suggesting the need to consider the gender of the individuals in future studies, regarding neuronal loss in aging and AD, in order to avoid problems in interpreting data.
S U M M A R YAstrocytosis is a hallmark of damage that frequently occurs during aging in human brain. Astrocytes proliferate in elderly subjects, becoming hypertrophic and highly immunoreactive for glial fibrillary acidic protein (GFAP). These cells are one type that actively responds in the repair and reorganization of damage to the neural parenchyma and are a source of several peptides and growth factors. One of these biomolecules is apolipoprotein D (apo D), a member of the lipocalin family implicated in the transport of small hydrophobic molecules. Although the role of apo D is unknown, increments in brain apo D expression have been observed in association with aging and with some types of neuropathology. We have found an overexpression of apo D mRNA in reactive astrocytes by in situ hybridization in combination with immunohistochemistry for apo D in normal aged human brains. The number of double-labeled cells varied according to the cerebral area and the gliosis grade. The possible significance of this increased synthesis of apo D in reactive astrocytes is discussed in relation to the role of apo D in aging and in glial function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.