Dimethylsulfoniopropionate (DMSP) is a key organic sulfur compound that is produced by many phytoplankton and macrophytes and is ubiquitous in marine environments. Following its release into the water column, DMSP is primarily metabolised by heterotrophic bacterioplankton, but recent evidence indicates that non-DMSP producing phytoplankton can also assimilate DMSP from the surrounding environment. In this study, we examined the uptake of DMSP by communities of bacteria and phytoplankton within the waters of the Great Barrier Reef (GBR), Australia. We incubated natural GBR seawater with DMSP and quantified the uptake of DMSP by different fractions of the microbial community (>8 µm, 3–8 µm, <3 µm). We also evaluated how microbial community composition and the abundances of DMSP degrading genes are influenced by elevated dissolved DMSP levels. Our results showed uptake and accumulation of DMSP in all size fractions of the microbial community, with the largest fraction (>8 µm) forming the dominant sink, increasing in particulate DMSP by 44–115% upon DMSP enrichment. Longer-term incubations showed however, that DMSP retention was short lived (<24 h) and microbial responses to DMSP enrichment differed depending on the community carbon and sulfur demand. The response of the microbial communities from inside the reef indicated a preference towards cleaving DMSP into the climatically active aerosol dimethyl sulfide (DMS), whereas communities from the outer reef were sulfur and carbon limited, resulting in more DMSP being utilised by the cells. Our results show that DMSP uptake is shared across members of the microbial community, highlighting larger phytoplankton taxa as potentially relevant DMSP reservoirs and provide new information on sulfur cycling as a function of community metabolism in deeper, oligotrophic GBR waters.
The ecologically important organic sulfur compound, dimethylsulfoniopropionate (DMSP), is ubiquitous in marine environments. Produced by some species of phytoplankton and bacteria, it plays a key role in cellular responses to environmental change. Recently, uptake of DMSP by non-DMSP-producing phytoplankton species has been demonstrated, highlighting knowledge gaps concerning DMSP distribution through the marine microbial food web. In this study, we traced the uptake and distribution of DMSP through a natural marine microbial community collected from off the eastern coastline Australia. We found a diverse phytoplankton community representing six major taxonomic groups and conducted DMSP-enrichment experiments both on the whole community, and the community separated into large (≥8.0 µm), medium (3.0–8.0 µm), and small (0.2–3.0 µm) size fractions. Our results revealed active uptake of DMSP in all three size fractions of the community, with the largest fraction (>8 µm) forming the major DMSP sink, where enrichment resulted in an increase of DMSPp by 144%. We observed evidence for DMSP catabolism in all size fractions with DMSP enrichment, highlighting loss from the system via MeSH or DMS production. Based on taxonomic diversity, we postulate the sources of DMSP were the dinoflagellates, Phaeocystis sp., and Trichodesmium sp., which were present in a relatively high abundance, and the sinks for DMSP were the diatoms and picoeucaryotes in this temperate community. These findings corroborate the role of hitherto disregarded phytoplankton taxa as potentially important players in the cycling of DMSP in coastal waters of Australia and emphasize the need to better understand the fate of accumulated DMSP and its significance in cellular metabolism of non-DMSP producers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.