Quantitative measurements of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in raw wastewater have been implemented worldwide since the beginning of the pandemic. Recent efforts are being made to evaluate different viral concentration methodologies to overcome supplier shortages during lockdowns. A set of 22-wastewater samples seeded with murine hepatitis virus (MHV), a member of the Coronaviridae family, and the bacteriophage MS2, were used to characterize and compare two ultrafiltration-based methods: a centrifugal ultrafiltration device (Centricon® Plus-70) and the automated concentrating pipette CP-Select™. Based on the recovery efficiencies, significant differences were observed for MHV, with Centricon® Plus-70 (24%) being the most efficient method. Nevertheless, concentrations of naturally occurring SARS-CoV-2, Human adenoviruses and JC polyomaviruses in these samples did not result in significant differences between methods suggesting that testing naturally occurring viruses may complement the evaluation of viral concentration methodologies. Based on the virus adsorption to solids and the necessity of a pre-centrifugation step to remove larger particles and avoid clogging when using ultrafiltration methods, we assessed the percentage of viruses not quantified after ultrafiltration. Around 23% of the detected SARS-CoV-2 would be discarded during the debris removal step. The CP-Select™ provided the highest concentration factor (up to 333×) and the lowest LoD (6.19 × 10 3 GC/l) for MHV and proved to be fast, automatic, highly reproducible and suitable to work under BSL-2 measures.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Wastewater based epidemiology was employed to track the spread of SARS-CoV-2 within the sewershed areas of 10 wastewater treatment plants (WWTPs) in Catalonia, Spain. A total of 185 WWTPs inflow samples were collected over the period consisting of both the first wave (mid-March to June) and the second wave (July to November). Concentrations of SARS-CoV-2 RNA (N1 and N2 assays) were quantified in these wastewaters as well as those of Human adenoviruses (HAdV) and JC polyomavirus (JCPyV), as indicators of human faecal contamination. SARS-CoV-2 N gene daily loads strongly correlated with the number of cases diagnosed one week after sampling i.e. wastewater levels were a good predictor of cases to be diagnosed in the immediate future. The conditions present at small WWTPs relative to larger WWTPs influence the ability to follow the pandemic. Small WWTPs (<24,000 inhabitants) had lower median loads of SARS-CoV-2 despite similar incidence of infection within the municipalities served by the different WWTP (but not lower loads of HAdV and JCPyV). The lowest incidence resulting in quantifiable SARS-CoV-2 concentration in wastewater differed between WWTP sizes, being 0.11 and 0.82 cases/1000 inhabitants for the large and small sized WWTP respectively.
In the wake of the COVID-19 pandemic, the use of next generation sequencing (NGS) has proved to be an important tool for the genetic characterization of SARS-CoV-2 from clinical samples. The use of different available NGS tools applied to wastewater samples could be the key for an in-depth study of the excreted virome, not only focusing on SARS-CoV-2 circulation and typing, but also to detect other potentially pandemic viruses within the same family. With this aim, 24-hours composite wastewater samples from March and July 2020 were sequenced by applying specific viral NGS as well as target enrichment NGS. The full virome of the analyzed samples was obtained, with human
Coronaviridae
members (CoV) present in one of those samples after applying the enrichment. One contig was identified as HCoV-OC43 and 8 contigs as SARS-CoV-2. CoVs from other animal hosts were also detected when applying this technique. These contigs were compared with those obtained from contemporary clinical specimens by applying the same target enrichment approach. The results showed that there is a co-circulation in urban areas of human and animal coronaviruses infecting domestic animals and rodents. NGS enrichment-based protocols might be crucial to describe the occurrence and genetic characteristics of SARS-CoV-2 and other
Coronaviridae
family members within the excreted virome present in wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.