Pluripotent stem cells represent a promising source of differentiated tissue-specific stem and multipotent progenitor cells for regenerative medicine and drug testing. The realisation of this potential relies on the establishment of robust and reproducible protocols of differentiation. Several reports have highlighted the importance of biomaterials in assisting directed differentiation. Graphene oxide (GO) is a novel material that has attracted increasing interest in the field of biomedicine. In this study, we demonstrate that GO coated substrates significantly enhance the differentiation of mouse embryonic stem (ES) cells to both primitive and definitive haematopoietic cells. GO does not affect cell proliferation or survival of differentiated cells but rather enhances the transition of haemangioblasts to haemogenic endothelial cells, a key step during haematopoietic specification. Importantly, GO also improves, in addition to murine, human ES cell differentiation to blood cells. Taken together, our study reveals a positive role for GO in haematopoietic differentiation and suggests that further functionalization of GO could represent a valid strategy for the generation of large numbers of functional blood cells. Producing these cells would accelerate haematopoietic drug toxicity testing and treatment of patients with blood disorders or malignancies.
SummaryThe differentiation of human embryonic stem cells (hESCs) to hematopoietic lineages initiates with the specification of hemogenic endothelium, a transient specialized endothelial precursor of all blood cells. This in vitro system provides an invaluable model to dissect the emergence of hematopoiesis in humans. However, the study of hematopoiesis specification is hampered by a lack of consensus in the timing of hemogenic endothelium analysis and the full hematopoietic potential of this population. Here, our data reveal a sharp decline in the hemogenic potential of endothelium populations isolated over the course of hESC differentiation. Furthermore, by tracking the dynamic expression of CD31 and CD235a at the onset of hematopoiesis, we identified three populations of hematopoietic progenitors, representing primitive and definitive subsets that all emerge from the earliest specified hemogenic endothelium. Our data establish that hemogenic endothelium populations endowed with primitive and definitive hematopoietic potential are specified simultaneously from the mesoderm in differentiating hESCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.