c Unspecific peroxygenase (UPO) represents a new type of heme-thiolate enzyme with self-sufficient mono(per)oxygenase activity and many potential applications in organic synthesis. With a view to taking advantage of these properties, we subjected the Agrocybe aegerita UPO1-encoding gene to directed evolution in Saccharomyces cerevisiae. To promote functional expression, several different signal peptides were fused to the mature protein, and the resulting products were tested. Over 9,000 clones were screened using an ad hoc dual-colorimetric assay that assessed both peroxidative and oxygen transfer activities. After 5 generations of directed evolution combined with hybrid approaches, 9 mutations were introduced that resulted in a 3,250-fold total activity improvement with no alteration in protein stability. A breakdown between secretion and catalytic activity was performed by replacing the native signal peptide of the original parental type with that of the evolved mutant; the evolved leader increased functional expression 27-fold, whereas an 18-fold improvement in the k cat /K m value for oxygen transfer activity was obtained. The evolved UPO1 was active and highly stable in the presence of organic cosolvents. Mutations in the hydrophobic core of the signal peptide contributed to enhance functional expression up to 8 mg/liter, while catalytic efficiencies for peroxidative and oxygen transfer reactions were increased by several mutations in the vicinity of the heme access channel. Overall, the directed-evolution platform described is a valuable point of departure for the development of customized UPOs with improved features and for the study of structure-function relationships.
Thermostable laccases with a high-redox potential have been engineered through a strategy that combines directed evolution with rational approaches. The original laccase signal sequence was replaced by the α-factor prepro-leader, and the corresponding fusion gene was targeted for joint laboratory evolution with the aim of improving kinetics and secretion by Saccharomyces cerevisiae, while retaining high thermostability. After eight rounds of molecular evolution, the total laccase activity was enhanced 34,000-fold culminating in the OB-1 mutant as the last variant of the evolution process, a highly active and stable enzyme in terms of temperature, pH range, and organic cosolvents. Mutations in the hydrophobic core of the evolved α-factor prepro-leader enhanced functional expression, whereas some mutations in the mature protein improved its catalytic capacities by altering the interactions with the surrounding residues.
The VPs (versatile peroxidases) secreted by white-rot fungi are involved in the natural decay of lignin. In the present study, a fusion gene containing the VP from Pleurotus eryngii was subjected to six rounds of directed evolution, achieving a level of secretion in Saccharomyces cerevisiae (21 mg/l) as yet unseen for any ligninolytic peroxidase. The evolved variant for expression harboured four mutations and increased its total VP activity 129-fold. The signal leader processing by the STE13 protease at the Golgi compartment changed as a consequence of overexpression, retaining the additional N-terminal sequence Glu-Ala-Glu-Ala that enhanced secretion. The engineered N-terminally truncated variant displayed similar biochemical properties to those of the non-truncated counterpart in terms of kinetics, stability and spectroscopic features. Additional cycles of evolution raised the T50 8°C and significantly increased the enzyme's stability at alkaline pHs. In addition, the Km for H2O2 was enhanced up to 15-fold while the catalytic efficiency was maintained, and there was an improvement in peroxide stability (with half-lives for H2O2 of 43 min at a H2O2/enzyme molar ratio of 4000:1). Overall, the directed evolution approach described provides a set of strategies for selecting VPs with improvements in secretion, activity and stability.
Metabolic engineering to divert carbon flux from sucrose to oil in high biomass crop like sugarcane is an emerging strategy to boost lipid yields per hectare for biodiesel production. Sugarcane stems comprise more than 70% of the crops' biomass and can accumulate sucrose in excess of 20% of their extracted juice. The energy content of oils in the form of triacylglycerol (TAG) is more than twofold that of carbohydrates. Here, we report a step change in TAG accumulation in sugarcane stem tissues achieving an average of 4.3% of their dry weight (DW) in replicated greenhouse experiments by multigene engineering. The metabolic engineering included constitutive co‐expression of wrinkled1; diacylglycerol acyltransferase1‐2; cysteine‐oleosin; and ribonucleic acid interference‐suppression of sugar‐dependent1. The TAG content in leaf tissue was also elevated by more than 400‐fold compared to non‐engineered sugarcane to an average of 8.0% of the DW and the amount of total fatty acids reached about 13% of the DW. With increasing TAG accumulation an increase of 18:1 unsaturated fatty acids was observed at the expense of 16:0 and 18:0 saturated fatty acids. Total biomass accumulation, soluble lignin, Brix and juice content were significantly reduced in the TAG hyperaccumulating sugarcane lines. Overcoming this yield drag by engineering lipid accumulation into late stem development will be critical to exceed lipid yields of current oilseed crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.