BackgroundSilicate ceramic bonding is carried out by acid-etching with hydrofluoric acid (HF) followed by an application of silane. By replacing HF with ammonium polyfluoride, contained in the same flask as the silane, the number of steps in this clinical procedure, can be reduced, while maintaining bond strength values, and reducing toxicity. A shear bond test was performed to compare the conventional and the simplified surface treatment techniques.Material and Methods Twenty ceramic samples were fabricated from IPS emax CAD® ceramic (Ivoclar Vivadent) and divided into two groups (G1 and G2) (n=10). The conventional technique was applied to G1 samples, and the simplified technique to G2 samples. A resin cement cylinder was bonded to each sample. Afterwards, samples underwent shear bond strength testing in a universal test machine.Results G1 obtained 26.53±6.33 MPa and G2 23.52±8.41 MPa, without statistically significant differences between the two groups.Conclusions Monobond Etch&Prime appears to obtain equivalent results in terms of bond strength while simplifying the technique. Further investigation is required to corroborate these preliminary findings. Key words:Shear bond strength, surface treatment, bonding to ceramic, hydrofluoric acid, ammonium polyfluoride.
Introduction: Today’s dentistry frequently employs bonded partial restorations, which are usually fabricated in ceramic materials. In the last decade, hybrid materials have emerged that attempt to combine the properties of composites and ceramics. Objectives: To evaluate in vitro, by means of a microtensile test, the bond strength between CAD-CAM restorative materials and the cement recommended by their manufacturer. Material and Method: From blocks of CAD-CAM restorative material bonded to composite blocks (Filtek 500®), beams with a bonding area of approximately 1 mm2 were made and divided into four groups: EMAX (IPS e.max CAD® lithium disilicate), VE (VITA Enamic® polymer-infiltrated ceramic matrix), LUA (Lava Ultimate® nano-ceramic resin with sandblasting protocol) and LUS (Lava Ultimate® nano-ceramic resin with silica coating protocol). In each group, perimeter (external) or central (internal) beams were differentiated according to the position in the block. The samples were tested on the LMT 100® microtensile machine. Using optical microscopy, the fractures were categorized as adhesive or cohesive (of the restorative material or composite), and the data were analysed with parametric tests (ANOVA). Results: The LUS group had the highest results (42 ± 20 MPa), followed by the LUA group (38 ± 18 MPa). EMAX had a mean of 34 ± 16 MPa, and VE was the lowest in this study (30 ± 17 MPa). In all groups, the central beams performed better than the perimeter beams. Both EMAX and VE had the most adhesive fractures, while LUA and LUS had a predominance of cohesive fractures. Conclusions: Lava Ultimate® nanoceramic resin with the silica coating protocol obtains the best bond strength values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.