[(18)F]Fluspidine demonstrated favourable target affinity and specificity as well as metabolic stability both in vitro and in animal experiments. The in vivo properties of [(18)F]fluspidine offer a high potential of this radiotracer for neuroimaging and quantitation of σ(1) receptors in vivo.
A series of various N-substituted 3-(3-fluoropropyl)-3H-spiro[[2]benzofuran-1,4'-piperidines] (7) has been synthesized. In receptor binding studies, the N-benzyl derivative 7a (WMS-1813) revealed extraordinarily high sigma(1) receptor affinity (K(i) = 1.4 nM) and excellent sigma(1)/sigma(2) selectivity (>600 fold). In vitro biotransformation of 7a with rat liver microsomes led to three main metabolites. N-Debenzylation was inhibited by introduction of an N-phenylethyl residue (7 g). The PET tracer [(18)F]7a was synthesized by nucleophilic substitution of the tosylate 13 with K[(18)F]F-K222-carbonate complex. The decay corrected radiochemical yield of [(18)F]7a was 35-48% with a radiochemical purity of >99.5% and a specific activity of 150-238 GBq/micromol. The radiotracer properties were evaluated in female CD-1 mice by organ distribution and ex vivo brain autoradiography. The radiotracer uptake in the brain was fast and sufficient, with values of approximately 4% injected dose per gram. Target specificity of [(18)F]7a was validated in blocking studies by preapplication of haloperidol, and significant reduction in the uptake of radioactivity was observed in the brain and peripheral organs expressing sigma(1) receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.