An efficient and simple methodology for Ullmann Cu(I)-catalyzed synthesis of di- and trisubstituted 1,3,5-triazine derivatives from dichlorotriazinyl benzenesulfonamide and corresponding nucleophiles is reported. Cations Cu(I) supported on macroporous and weakly acidic, low-cost industrial resin of polyacrylate type were used as a catalyst. The reaction times and yields were compared with traditional synthetic methods for synthesis of substituted 1,3,5-triazine derivatives via nucleophilic substitution of chlorine atoms in dichlorotriazinyl benzenesulfonamide. It was found that Ullmann-type reactions provide significantly shortened reaction times and, in some cases, also higher yields. Finally, trisubstituted s-triazine derivatives were effectively prepared via Ullmann-type reaction in a one-pot synthetic design. Six new s-triazine derivatives with potential biological activity were prepared and characterized.
A series of 1,3,5-triazine analogues, incorporating aminobenzene sulfonamide, aminoalcohol/phenol, piperazine, chalcone, or stilbene structural motifs, were evaluated as potential antioxidants. The compounds were prepared by using step-by-step nucleophilic substitution of chlorine atoms in starting 2,4,6-trichloro-1,3,5-triazine. Reactions were catalyzed by Cu(I)-supported on a weakly acidic resin. The radical scavenging activity was determined in terms of %inhibition activity and EC50, using the ABTS method. Trolox and ascorbic acid (ASA) were used as standards. In the lowest concentration 1 × 10−4 M, the %inhibition activity values at 0 min were comparable with both standards at least for 10 compounds. After 60 min, compounds 5, 6, 13, and 25 showed nearly twice %inhibition (73.44–87.09%) in comparison with the standards (Trolox = 41.49%; ASA = 31.07%). Values of EC50 at 60 min (17.16–27.78 μM) were 5 times lower for compounds 5, 6, 13, and 25 than EC50 of both standards (trolox = 178.33 μM; ASA = 147.47 μM). Values of EC50 correlated with %inhibition activity. Based on these results, the presented 1,3,5-triazine analogues have a high potential in the treatment of illnesses caused or related to oxidative stress.
A series of 1,3,5-triazinyl aminobenzenesulfonamides substituted by aminoalcohol, aminostilbene, and aminochalcone structural motifs was synthesized as potential human carbonic anhydrase (hCA) inhibitors. The compounds were evaluated on their inhibition of tumor-associated hCA IX and hCA XII, hCA VII isoenzyme present in the brain, and physiologically important hCA I and hCA II. While the test compounds had only a negligible effect on physiologically important isoenzymes, many of the studied compounds significantly affected the hCA IX isoenzyme. Several compounds showed activity against hCA XII; (E)-4-{2-[(4-[(2,3-dihydroxypropyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (31) and (E)-4-{2-[(4-[(4-hydroxyphenyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (32) were the most effective inhibitors with KIs = 4.4 and 5.9 nM, respectively. In addition, the compounds were tested against vancomycin-resistant Enterococcus faecalis (VRE) isolates. (E)-4-[2-({4-[(4-cinnamoylphenyl)amino]-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide (21) (MIC = 26.33 µM) and derivative 32 (MIC range 13.80–55.20 µM) demonstrated the highest activity against all tested strains. The most active compounds were evaluated for their cytotoxicity against the Human Colorectal Tumor Cell Line (HCT116 p53 +/+). Only 4,4’-[(6-chloro-1,3,5-triazin-2,4-diyl)bis(iminomethylene)]dibenzenesulfonamide (7) and compound 32 demonstrated an IC50 of ca. 6.5 μM; otherwise, the other selected derivatives did not show toxicity at concentrations up to 50 µM. The molecular modeling and docking of active compounds into various hCA isoenzymes, including bacterial carbonic anhydrase, specifically α-CA present in VRE, was performed to try to outline a possible mechanism of selective anti-VRE activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.