Clinical isolates of Neisseria meningitidis with reduced susceptibility to penicillin G (intermediate isolates, PenI ) harbor alterations in the penA gene encoding the penicillin binding protein 2 (PBP2). A 402-bp DNA fragment in the 3 half of penA was sequenced from a collection of 1,670 meningococcal clinical isolates from 22 countries that spanned 60 years. Phenotyping, genotyping, and the determination of MICs of penicillin G were also performed. A total of 139 different penA alleles were detected with 38 alleles that were highly related, clustered together in maximum-likelihood analysis and corresponded to the penicillin G-susceptible isolates. The remaining 101 penA alleles were highly diverse, corresponded to different genotypes or phenotypes, and accounted for 38% of isolates, but no clonal expansion was detected. Analysis of the altered alleles that were represented by at least five isolates showed high correlation with the Pen I phenotype. The deduced amino acid sequence of the corresponding PBP2 comprised five amino acid residues that were always altered. This correlation was not complete for rare alleles, suggesting that other mechanisms may also be involved in conferring reduced susceptibility to penicillin. Evidence of mosaic structures through events of interspecies recombination was also detected in altered alleles. A new website was created based on the data from this work (http://neisseria.org/nm/typing/penA). These data argue for the use of penA sequencing to identify isolates with reduced susceptibility to penicillin G and as a tool to improve typing of meningococcal isolates, as well as to analyze DNA exchange among Neisseria species.
The pathogenesis of meningococcal disease is poorly understood due to the lack of a relevant animal model. Moreover, the use of animal models is not optimal as most meningococcal virulence determinants recognize receptors that are specifically expressed in human tissues. One major element of the host specificity is the system of meningococcal iron uptake by transferrin-binding proteins that bind specifically human transferrin but not murine transferrin. We developed a new mouse model for experimental meningococcal infection using transgenic mice expressing human transferrin. Intraperitoneal challenge of transgenic mice induced bacteremia for at least 48 h with an early stage of multiplication, whereas the initial inoculum was rapidly cleared from blood in wild-type mice. Inflammation in the subarachnoidal space with a high influx of polymorphonuclear cells was observed only in transgenic mice. Meningococcal mutants that were unable to use transferrin as a source of iron were rapidly cleared from both wild-type and transgenic mice. Thus, transgenic mice expressing human transferrin may represent an important advance as a new mouse model for in vivo studies of meningococcal virulence and immunogenicity factors.
Meningococci spread via respiratory droplets, whereas the closely related gonococci are transmitted sexually. Several outbreaks of invasive meningococcal disease have been reported in Europe and the United States among men who have sex with men (MSM). We recently identified an outbreak of serogroup C meningococcal disease among MSM in Germany and France. In this study, genomic and proteomic techniques were used to analyze the outbreak isolates. In addition, genetically identical urethritis isolates were recovered from France and Germany and included in the analysis. Genome sequencing revealed that the isolates from the outbreak among MSM and from urethritis cases belonged to a clade within clonal complex 11. Proteome analysis showed they expressed nitrite reductase, enabling anaerobic growth as previously described for gonococci. Invasive isolates from MSM, but not urethritis isolates, further expressed functional human factor H binding protein associated with enhanced survival in a newly developed transgenic mouse model expressing human factor H, a complement regulatory protein. In conclusion, our data suggest that urethritis and outbreak isolates followed a joint adaptation route including adaption to the urogenital tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.