Aims: To elucidate the first colonizers within in vivo dental biofilm and to establish potential population shifts that occur during the early phases of biofilm formation. Methods and Results: A ÔcheckerboardÕ DNA-DNA hybridization assay was employed to identify 40 different bacterial strains. Dental biofilm samples were collected from 15 healthy subjects, 0, 2, 4 and 6 h after tooth cleaning and the composition of these samples was compared with that of whole saliva collected from the same individuals. The bacterial distribution in biofilm samples was distinct from that in saliva, confirming the selectivity of the adhesion process. In the very early stages, the predominant tooth colonizers were found to be Actinomyces species. The relative proportion of streptococci, in particular Streptococcus mitis and S. oralis, increased at the expense of Actinomyces species between 2 and 6 h while the absolute level of Actinomyces remained unaltered. Periodontal pathogens such as Tannerella forsythensis (Bacteroides forsythus), Porphyromonas gingivalis and Treponema denticola as well as Actinobacillus actinomycetemcomitans were present in extremely low levels at all the examined time intervals in this healthy group of subjects. Conclusion: The data provide a detailed insight into the bacterial population shifts occurring within the first few hours of biofilm formation and show that the early colonizers of the tooth surface predominantly consist of beneficial micro-organisms. Significance and Impact of the Study: The early colonizers of dental plaque are of great importance in the succession stages of biofilm formation and its overall effect on the oral health of the host.
Histatin 5 is a human basic salivary peptide with strong fungicidal properties in vitro. To elucidate the mechanism of action, the effect of histatin 5 on the viability of Candida albicans cells was studied in relation to its membrane perturbing properties. It was found that both the killing activity and the membrane perturbing activity, studied by the influx of a DNA-specific marker propidium iodide, were inhibited by high salt conditions and by metabolic inhibitors, like sodium azide. In addition, exposure to histatin 5 resulted in a loss of the mitochondrial transmembrane potential in situ, measured by the release of the potential-dependent distributional probe rhodamine 123. Localization studies using tetramethylrhodamine isothiocyanate-labeled histatin 5 or fluorescein isothiocyanate-labeled histatin 5 showed a granular intracellular distribution of the peptide, which co-localized with mitotracker orange, a permeant mitochondria-specific probe. Like the biological effects, uptake of labeled histatin 5 was inhibited by mitochondrial inhibitors and high salt conditions. Our data indicate that histatin 5 is internalized, and targets to the energized mitochondrion.
The proteome of whole saliva, in contrast to that of serum, is highly susceptible to a variety of physiological and biochemical processes. First, salivary protein secretion is under neurologic control, with protein output being dependent on the stimulus. Second, extensive salivary protein modifications occur in the oral environment, where a plethora of host- and bacteria-derived enzymes act on proteins emanating from the glandular ducts. Salivary protein biosynthesis starts with the transcription and translation of salivary protein genes in the glands, followed by post-translational processing involving protein glycosylation, phosphorylation, and proteolysis. This gives rise to salivary proteins occurring in families, consisting of structurally closely related family members. Once glandular secretions enter the non-sterile oral environment, proteins are subjected to additional and continuous protein modifications, leading to extensive proteolytic cleavage, partial deglycosylation, and protein-protein complex formation. All these protein modifications occur in a dynamic environment dictated by the continuous supply of newly synthesized proteins and removal by swallowing. Understanding the proteome of whole saliva in an environment of continuous turnover will be a prerequisite to gain insight into the physiological and pathological processes relevant to oral health, and be crucial for the identification of meaningful biomarkers for oral disease.
The acquired enamel pellicle is a thin protein film forming upon exposure of tooth enamel surfaces to saliva. The structural analysis of this integument relies on efficient pellicle harvesting and protein identification procedures. Material from three individual subjects and two pooled samples yielded the identification by LC-ESI-MS/MS of 130 pellicle proteins of which 89 were found in three or more experiments. A high intersubject consistency in pellicle composition was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.