Plunge milling has been proven to be an efficient strategy for machining of pockets with deep cavities and difficult-to-cut material. Previous work generates the plunge toolpath mainly by controlling the radial cutting width within the given value. However, uneven tool engagement angles may lead to excessive tool load and tool load fluctuations, which has a negative influence on tool life. In this study, a universal plunge milling toolpath generation method is proposed to improve tool life by decreasing the maximum tool engagement angle. A series of concentric circles with constant radius increment is utilized to generate a toolpath with constant cutting radial depth. Center of the concentric circle is determined based on the pocket contour. New detailed algorithms to generate plunge toolpath for basic cases have been developed. An automatic pocket subdivision algorithm has been developed by dividing the pocket into several subregions that are easy to be machined. Without loss of generality, the method is applicable for both open and closed pockets. It also works for pockets with and without islands inside. The method is implemented and verified successfully by machining experiments. The results provide strong evidence that the proposed method can reduce the maximum engagement angle over the entire toolpath and thus improve the tool life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.