BackgroundCD33 is a well-known stem cell target in acute myeloid leukemia. So far, however, little is known about expression of CD33 on leukemic stem cells in chronic leukemias.
Design and MethodsWe analyzed expression of CD33 in leukemic progenitors in chronic myeloid leukemia by multi-color flow cytometry and quantitative polymerase chain reaction. In addition, the effects of a CD33-targeting drug, gemtuzumab/ozogamicin, were examined.
ResultsAs assessed by flow cytometry, stem cell-enriched CD34 -cells (>98% purity) displayed higher levels of CD33 mRNA. In chronic phase patients, CD33 was found to be expressed invariably on most or all stem cells, whereas in accelerated or blast phase of the disease, the levels of CD33 on stem cells varied from donor to donor. The MDR1 antigen, supposedly involved in resistance against ozogamicin, was not detectable on leukemic CD34 + /CD38 -cells. Correspondingly, gemtuzumab/ozogamicin produced growth inhibition in leukemic progenitor cells in all patients tested. The effects of gemtuzumab/ozogamicin were dose-dependent, occurred at low concentrations, and were accompanied by apoptosis in suspension culture. Moreover, the drug was found to inhibit growth of leukemic cells in a colony assay and long-term culture-initiating cell assay. Finally, gemtuzumab/ozogamicin was found to synergize with nilotinib and bosutinib in inducing growth inhibition in leukemic cells.
Conclusions
Bumble bees may possess a scalar character called dominance, which changes according to certain rules as a result of encounters between pairs of organisms. An equation for the distribution of dominance in a population is derived based on a set of plausible axioms. The resulting Boltzmann-like integrodifferential equation is analyzed, analytically and/or numerically, for certain important special cases.
SummaryIn the Austrian biodatabase for chronic myelomonocytic leukemia (ABCMML) clinicolaboratory real-life data have been captured from 606 CMML patients from 14 different hospitals over the last 30 years. It is the only large biodatabase worldwide in which functional methods such as semisolid in vitro cultures complement modern molecular methods such as next generation sequencing. This provides the possibility to comprehensively study the biology of CMML. The aim of this study was to compare patient characteristics with published CMML cohorts and to validate established prognostic parameters in order to examine if this real-life database can serve as a representative and useful data source for further research. After exclusion of patients in transformation characteristics of 531 patients were compared with published CMML cohorts. Median values for age, leukocytes, hemoglobin, platelets, lactate dehydrogenase (LDH) and circulating blasts were within the ranges of reported CMML series. Established prognostic parameters including leukocytes, hemoglobin, blasts and adverse cytogenetics were able to discriminate patients with different outcome. Myeloproliferative (MP) as compared to myelodysplastic (MD)-CMML patients had higher values for circulating blasts, LDH, RAS-pathway mutations and for spontaneous myelomonocytic colony growth in vitro as well as more often splenomegaly. This study demonstrates that the patient cohort of the ABCMML shares clinicolaboratory characteristics with reported CMML cohorts from other countries and confirms phenotypic and genotypic differences between MP-CMML and MD-CMML. Therefore, results obtained from molecular and biological analyses using material from the national cohort will also be applicable to other CMML series and thus may have a more general significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.