The integral membrane proteins Alb3, OxaI, and YidC belong to an evolutionary conserved protein family mediating protein insertion into the thylakoid membrane of chloroplasts, the inner membrane of mitochondria, and bacteria, respectively. Whereas OxaI and YidC are involved in the insertion of a wide range of membrane proteins, the function of Alb3 seems to be limited to the insertion of a subset of the light-harvesting chlorophyllbinding proteins. In this study, we identified a second chloroplast homologue of the Alb3/OxaI/YidC family, named Alb4. Alb4 is almost identical to the Alb3/OxaI/YidC domain of the previously described 110-kDa inner envelope protein Artemis. We show that Alb4 is expressed as a separate 55-kDa protein and that Artemis was identified mistakenly. Alb4 is located in the thylakoid membrane of Arabidopsis thaliana chloroplasts. Analysis of an Arabidopsis mutant (Salk_136199) and RNA interference lines with a reduced level of Alb4 revealed chloroplasts with an altered ultrastructure. Mutant plastids are larger and more spherical in appearance, and the grana stacks within the mutant lines are less appressed than in the wild-type chloroplasts. These data indicate that Alb4 is required for proper chloroplast biogenesis.
The integration of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membrane requires the integral thylakoid membrane protein ALB3, a homologue of the bacterial cytoplasmic membrane protein YidC. In bacteria, YidC is associated with the SecY-translocase and facilitates the integration of Sec-dependent proteins into the plasma membrane. In addition, it is also involved in the insertion of Sec-independent proteins. In the present study we demonstrate, in Arabidopsis thaliana, that most ALB3 is a constituent of an oligomeric complex of approx. 180 kDa. In addition, we detected ALB3 in several higher-molecular-mass complexes (up to 700 kDa). Furthermore, we show that most ALB3 co-fractionates with cpSecY during gel-filtration analysis and blue native gel electrophoresis, suggesting an association of ALB3 with the cpSecY complex. A direct interaction of ALB3 with the cpSecY complex was demonstrated by co-immunoprecipitation experiments using digitonin-solubilized thylakoid membrane proteins and anti-cpSecY or anti-ALB3 antibodies. This result was further confirmed by electron microscopic co-immunolocalization of ALB3 and cpSecY. In addition, an association of ALB3 with the cpSecY complex was demonstrated directly by cross-linking experiments using the chemical cross-linker disuccinimidyl suberate.
Numerous proteins are transported into or across the chloroplast thylakoid membrane. To date, two major pathways have been identified for the transport of luminal proteins (the Sec- and Tat-dependent pathways) and it is now clear that these protein translocases use fundamentally different transport mechanisms. Integral membrane proteins are inserted by means of at least two further pathways. One involves the input of numerous targeting factors, including SRP (signal recognition particle), FtsY and Albino3. Surprisingly, the other pathway does not involve any of the known chloroplastic targeting factors, and insertion is energy-independent, raising the possibility of an unusual ‘spontaneous’ insertion mechanism.
Numerous proteins are transported into or across the chloroplast thylakoid membrane. To date, two major pathways have been identified for the transport of luminal proteins (the Sec- and Tat-dependent pathways) and it is now clear that these protein translocases use fundamentally different transport mechanisms. Integral membrane proteins are inserted by means of at least two further pathways. One involves the input of numerous targeting factors, including SRP (signal recognition particle), FtsY and Albino3. Surprisingly, the other pathway does not involve any of the known chloroplastic targeting factors, and insertion is energy-independent, raising the possibility of an unusual 'spontaneous' insertion mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.