Caseinate-stabilized emulsions of black cumin (Nigella sativa) and tamanu (Calophyllum inophyllum) oils were studied in terms of preparation, characterization, and antibacterial properties. The oils were described while using their basic characteristics, including fatty acid composition and scavenging activity. The oil-in-water (o/w) emulsions containing the studied oils were formulated, and the influence of protein stabilizer (sodium caseinate (CAS), 1–12 wt%), oil contents (5–30 wt%), and emulsification methods (high-shear homogenization vs sonication) on the emulsion properties were investigated. It was observed that, under both preparation methods, emulsions of small, initial droplet sizes were predominantly formed with CAS content that was higher than 7.5 wt%. Sonication was a more efficient emulsification procedure and was afforded emulsions with smaller droplet size throughout the entire used concentration ranges of oils and CAS when compared to high-shear homogenization. At native pH of ~ 6.5, all of the emulsions exhibited negative zeta potential that originated from the presence of caseinate. The antibacterial activities of both oils and their emulsions were investigated with respect to the growth suppression of common spoilage bacteria while using the disk diffusion method. The oils and selected emulsions were proven to act against gram positive strains, mainly against Staphylococcus aureus (S. aureus) and Bacillus cereus (B. cereus); regrettably, the gram negative species were fully resistant against their action.
The growing application of materials containing TiO2 particles has led to an increased risk of human exposure, while a gap in knowledge about the possible adverse effects of TiO2 still exists. In this work, TiO2 particles of rutile, anatase, and their commercial mixture were exposed to various environments, including simulated gastric fluids and human blood plasma (both representing in vivo conditions), and media used in in vitro experiments. Simulated body fluids of different compositions, ionic strengths, and pH were used, and the impact of the absence or presence of chosen enzymes was investigated. The physicochemical properties and agglomeration of TiO2 in these media were determined. The time dependent agglomeration of TiO2 related to the type of TiO2, and mainly to the type and composition of the environment that was observed. The presence of enzymes either prevented or promoted TiO2 agglomeration. TiO2 was also observed to exhibit concentration-dependent cytotoxicity. This knowledge about TiO2 behavior in all the abovementioned environments is critical when TiO2 safety is considered, especially with respect to the significant impact of the presence of proteins and size-related cytotoxicity.
A green, nature-friendly synthesis of polyaniline colloidal particles based on enzyme-assisted oxidation of aniline with horseradish peroxidase and chitosan or poly(vinyl alcohol) as steric stabilizers was successfully employed. Physicochemical characterization revealed formation of particles containing the polyaniline emeraldine salt and demonstrated only a minor effect of polymer stabilizers on particle morphology. All tested colloidal particles showed in vitro antioxidation activity determined via scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. In vitro, they were able to reduce oxidative stress and inhibit the production of reactive oxygen species by neutrophils and inflammatory cytokines by macrophages. The anti-inflammatory effect observed was related to their antioxidant activity, especially in the case of neutrophils. The particles can thus be especially advantageous as active components of biomaterials modulating the early stages of inflammation. In addition to the immunomodulatory effect, the presence of intrinsically conducting polyaniline can impart cell-instructive properties to the particles. The approach to particle synthesis that we employed�an original one using environmentally friendly and biocompatible horseradish peroxidase�represents a smart way of preparing conducting particles with unique properties, which can be further modified by the stabilizers used.
Novel bio-inspired conductive scaffolds composed of sodium hyaluronate containing water soluble polyaniline or polypyrrole colloidal particles (concentrations 0.108, 0.054 and 0.036 % w/w) were manufactured. For this purpose, either crosslinking with N-(3-dimethylaminopropyl-N-ethylcarbodiimide hydrochloride and N-hydroxysuccinimid or a freeze-thawing process in the presence of poly(vinylalcohol) were used. The scaffolds comprised interconnected pores with prevailing porosity values of ~30 % and pore sizes enabling the accommodation of cells. Good swelling capacity (92 – 97 %) without any sign of disintegration was typical for all samples. The elasticity modulus depended on the composition of the scaffolds, with the highest value of ~50 000 Pa obtained for the sample containing the highest content of polypyrrole particles. The scaffolds did not possess cytotoxicity and allowed cell adhesion and growth on the surface. Using the in vivo-mimicking conditions in a bioreactor, cells were also able to grow into the structure of the scaffolds. The technique of scaffold preparation used here thus overcomes the limitations of conducting polymers (e.g. poor solubility in an aqueous environment, and limited miscibility with other hydrophilic polymer matrices) and moreover leads to the preparation of cytocompatible scaffolds with potentially cell-instructive properties, which may be of advantage in the healing of damaged electro-sensitive tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.