Ground-supported cylindrical tanks are strategically very important structures used to store a variety of liquids. This paper presents the theoretical background of fluid effect on tank when a fluid container is subjected to horizontal acceleration. Fluid excites the hydrodynamic (impulsive and convective) pressures, impulsive and convective (sloshing) actions. Seismic response of cylindrical fluid filling tanks fixed to rigid foundations was calculated for variation of the tank slenderness parameter. The calculating procedure has been adopted in Eurocode 8.
Ground-supported cylindrical tanks are used to store a variety of liquids. The fluid was develops a hydrodynamic pressures on walls and bottom of the tank during earthquake. This paper provides dynamic time-history response of concrete open top cylindrical liquid storage tank considering fluid-structure interaction due to earthquake. Numerical model of cylindrical tank was performed by application of the Finite Element Method (FEM) utilizing software ADINA. Arbitrary-Lagrangian-Eulerian (ALE) formulation was used for the problem analysis. Two way Fluid-Structure Interaction (FSI) techniques were used for the simulation of the interaction between the structure and the fluid at the common boundary
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.