Secreted, extracellular galectin-1 (exGal-1) but not intracellular Gal-1 (inGal-1) has been described as a strong immunosuppressive protein due to its major activity of inducing apoptosis of activated T-cells. It has previously been reported that T-cells express Gal-1 upon activation, however its participation in T-cell functions has remained largely elusive. To determine function of Gal-1 expressed by activated Tcells we have carried out a series of experiments. We have shown that Gal-1, expressed in Gal-1-transgenic Jurkat cells or in activated T-cells, remained intracellularly indicating that Gal-1-induced T-cell death was not a result of an autocrine effect of the de novo expressed Gal-1. Rather, a particular consequence of the inGal-1 expression was that T-cells became more sensitive to exGal-1 added either as a soluble protein or bound to the surface of a Gal-1-secreting effector cell. This was also verified when the susceptibility of activated T-cells from wild type or Gal-1 knockout mice to Gal-1-induced apoptosis were compared. Murine T-cells expressing Gal-1 were more sensitive to the cytotoxicity of the exGal-1 than their Gal-1 knockout counterparts. We also conducted a study with activated T-cells from patients with systemic lupus erythematosus (SLE), a disease in which dysregulated T-cell apoptosis has been well described. SLE T-cells expressed lower amounts of Gal-1 than healthy T-cells and were less sensitive to exGal-1. These results suggested a novel role of inGal-1 in T-cells as a regulator of T-cell response to exGal-1, and its likely contribution to the mechanism in T-cell apoptosis deficiency in lupus.
The principles of β-sheet folding and design for α-peptidic sequences are well established, while those for sheet mimetics containing homologated amino acid building blocks are still under investigation. To reveal the structure-function relations of β-amino-acid-containing foldamers, we followed a top-down approach to study a series of α/β-peptidic analogs of anginex, a β-sheet-forming antiangiogenic peptide. Eight anginex analogs were developed by systematic α → β(3) substitutions and analyzed by using NMR and CD spectroscopy. The foldamers retained the β-sheet tendency, though with a decreased folding propensity. β-Sheet formation could be induced by a micellar environment, similarly to that of the parent peptide. The destructuring effect was higher when the α → β(3) exchange was located in the β-sheet core. Analysis of the β-sheet stability versus substitution pattern and the local conformational bias of the bulky β(3)V and β(3)I residues revealed that a mismatch between the H-bonding preferences of the α- and β-residues played a minor role in the structure-breaking effect. Temperature-dependent CD and NMR measurements showed that the hydrophobic stabilization was scaled-down for the α/β-peptides. Analysis of the biological activity of the foldamer peptides showed that four anginex derivatives dose-dependently inhibited the proliferation of a mouse endothelial cell line. The α → β(3) substitution strategy applied in this work can be a useful approach to the construction of bioactive β-sheet mimetics with a reduced aggregation tendency and improved pharmacokinetic properties.
Bone marrow derived mesenchymal stromal cells (MSCs) have recently been implicated as one source of the tumor-associated stroma, which plays essential role in regulating tumor progression. In spite of the intensive research, the individual factors in MSCs controlling tumor progression have not been adequately defined. In the present study we have examined the role of galectin-1 (Gal-1), a protein highly expressed in tumors with poor prognosis, in MSCs in the course of tumor development. Co-transplantation of wild type MSCs with 4T1 mouse breast carcinoma cells enhances the incidence of palpable tumors, growth, vascularization and metastasis. It also reduces survival compared to animals treated with tumor cells alone or in combination with Gal-1 knockout MSCs. In vitro studies show that the absence of Gal-1 in MSCs does not affect the number of migrating MSCs toward the tumor cells, which is supported by the in vivo migration of intravenously injected MSCs into the tumor. Moreover, differentiation of endothelial cells into blood vessel-like structures strongly depends on the expression of Gal-1 in MSCs. Vital role of Gal-1 in MSCs has been further verified in Gal-1 knockout mice. By administering B16F10 melanoma cells into Gal-1 deficient animals, tumor growth is highly reduced compared to wild type animals. Nevertheless, co-injection of wild type but not Gal-1 deficient MSCs results in dramatic tumor growth and development.These results confirm that galectin-1 is one of the critical factors in MSCs regulating tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.