Background There are two types of diabetes. Type 1 diabetes affects younger people and needs treatment with insulin injections. Type 2 diabetes affects older people and can usually be treated by diet and oral drugs. Diabetic neuropathy affects 10% of patients with diabetes mellitus at diagnosis and 40% to 50% after 10 years. Enhanced glucose control is the best studied intervention for the prevention of this disabling condition but there have been no systematic reviews of the evidence. Objectives To examine the evidence for enhanced glucose control in the prevention of distal symmetric polyneuropathy in people with type 1 and type 2 diabetes. Search methods We searched the Cochrane Neuromuscular Disease Group Specialized Register (30 January 2012), CENTRAL (2012, Issue 1), MED-LINE (1966 to January 2012) and EMBASE (1980 to January 2012) for randomized controlled trials of enhanced glucose control in diabetes mellitus. Selection criteria We included all randomized, controlled studies investigating enhanced glycemic control that reported neuropathy outcomes after at least one year of intervention. Our primary outcome measure was annual development of clinical neuropathy defined by a clinical scale. Secondary outcomes included motor nerve conduction velocity and quantitative vibration testing. Data collection and analysis Two authors independently reviewed all titles and abstracts identified by the database searches for inclusion. Two authors abstracted data from all included studies with a standardized form. A third author mediated conflicts. We analyzed the presence of clinical neuropathy with annualized risk differences (RDs), and conduction velocity and quantitative velocity measurements with mean differences per year. Main results This review identified 17 randomized studies that addressed whether enhanced glucose control prevents the development of neuropathy. Seven of these studies were conducted in people with type 1 diabetes, eight in type 2 diabetes, and two in both types. A meta-analysis of the two studies that reported the primary outcome (incidence of clinical neuropathy) with a total of 1228 participants with type 1 diabetes revealed a significantly reduced risk of developing clinical neuropathy in those with enhanced glucose control, an annualized RD of −1.84% (95% confidence interval (CI) −1.11 to −2.56). In a similar analysis of four studies that reported the primary outcome, involving 6669 participants with type 2 diabetes, the annualized RD of developing clinical neuropathy was −0.58% (95% CI 0.01 to −1.17). Most secondary outcomes were significantly in favor of intensive treatment in both populations. However, both types of diabetic participants also had a significant increase in severe adverse events including hypoglycemic events. Authors’ conclusions According to high-quality evidence, enhanced glucose control significantly prevents the development of clinical neuropathy and reduces nerve conduction and vibration threshold abnormalities in type 1 diabetes mellitus. In type 2 diab...
To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases, hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth Type 2 (CMT2). In contrast, ALS associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss of function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
Metabolic and vascular factors have been invoked in the pathogenesis of diabetic neuropathy but their interrelationships are poorly understood. Both aldose reductase inhibitors and vasodilators improve nerve conduction velocity, blood flow, and (Na',K+)-ATPase activity in the streptozotocin diabetic rat, implying a metabolic-vascular interaction. NADPH is an obligate cofactor for both aldose reductase and nitric oxide synthase such that activation of aldose reductase by hyperglycemia could limit nitric oxide synthesis by cofactor competition, producing vasoconstriction, ischemia, and slowing of nerve conduction. In accordance with this construct, N-nitro-L-arginine methyl ester, a competitive inhibitor of nitric oxide synthase reversed the increased nerve conduction velocity afforded by aldose reductase inhibitor treatment in the acutely diabetic rat without affecting the attendant correction of nerve sorbitol and myo-inositol. With prolonged administration, N-nitro-L-arginine methyl ester fully reproduced the nerve conduction slowing and (Na',K+)-ATPase impairment characteristic of diabetes. Thus the aldose reductase-inhibitor-sensitive component of conduction slowing and the reduced (Na+,K+)-ATPase activity in the diabetic rat may reflect in part impaired nitric oxide activity, thus comprising a dual metabolicischemic pathogenesis. (J. Clin. Invest. 1994. 94:853-859.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.