Bronchopulmonary dysplasia (BPD) remains a major complication of prematurity resulting in significant morbidity and mortality. The pathology of BPD is multifactorial and leads to alveolar simplification and distal lung injury. Previous studies have shown a beneficial effect of systemic treatment with bone marrow-derived mesenchymal stromal cells (MSCs) and MSC-conditioned media (MSC-CM) leading to amelioration of the lung parenchymal and vascular injury in vivo in the hyperoxia murine model of BPD. It is possible that the beneficial response from the MSCs is at least in part due to activation of endogenous lung epithelial stem cells. Bronchioalveolar stem cells (BASCs) are an adult lung stem cell population capable of self-renewal and differentiation in culture, and BASCs proliferate in response to bronchiolar and alveolar lung injury in vivo. Systemic treatment of neonatal hyperoxia-exposed mice with MSCs or MSC-CM led to a significant increase in BASCs compared with untreated controls. Treatment of BASCs with MSC-CM in culture showed an increase in growth efficiency, indicating a direct effect of MSCs on BASCs. Lineage tracing data in bleomycin-treated adult mice showed that Clara cell secretory protein-expressing cells including BASCs are capable of contributing to alveolar repair after lung injury. MSCs and MSC-derived factors may stimulate BASCs to play a role in the repair of alveolar lung injury found in BPD and in the restoration of distal lung cell epithelia. This work highlights the potential important role of endogenous lung stem cells in the repair of chronic lung diseases.
Neutrophils (PMN) are best known for their phagocytic functions against invading pathogens and microorganisms. They have the shortest half-life amongst leukocytes and in their non-activated state are constitutively committed to apoptosis. When recruited to inflammatory sites to resolve inflammation, they produce an array of cytotoxic molecules with potent antimicrobial killing. Yet, when these powerful cytotoxic molecules are released in an uncontrolled manner they can damage surrounding tissues. In recent years however, neutrophil versatility is increasingly evidenced, by demonstrating plasticity and immunoregulatory functions. We have recently identified a new neutrophil-derived subpopulation, which develops spontaneously in standard culture conditions without the addition of cytokines/growth factors such as granulocyte colony-stimulating factor (GM-CSF)/interleukin (IL)-4. Their phagocytic abilities of neutrophil remnants largely contribute to increase their size immensely; therefore they were termed giant phagocytes (Gϕ). Unlike neutrophils, Gϕ are long lived in culture. They express the cluster of differentiation (CD) neutrophil markers CD66b/CD63/CD15/CD11b/myeloperoxidase (MPO)/neutrophil elastase (NE), and are devoid of the monocytic lineage markers CD14/CD16/CD163 and the dendritic CD1c/CD141 markers. They also take-up latex and zymosan, and respond by oxidative burst to stimulation with opsonized-zymosan and PMA. Gϕ also express the scavenger receptors CD68/CD36, and unlike neutrophils, internalize oxidized-low density lipoprotein (oxLDL). Moreover, unlike fresh neutrophils, or cultured monocytes, they respond to oxLDL uptake by increased reactive oxygen species (ROS) production. Additionally, these phagocytes contain microtubule-associated protein-1 light chain 3B (LC3B) coated vacuoles, indicating the activation of autophagy. Using specific inhibitors it is evident that both phagocytosis and autophagy are prerequisites for their development and likely NADPH oxidase dependent ROS. We describe here a method for the preparation of this new subpopulation of long-lived, neutrophil-derived phagocytic cells in culture, their identification and their currently known characteristics. This protocol is essential for obtaining and characterizing Gϕ in order to further investigate their significance and functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.