Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bin's average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk<.000417). Two aggregate criteria for linkage were also met (clusters of nominally significant P values that did not occur in 1,000 replicates of the entire data set with no linkage present): 12 consecutive bins with both P(AvgRnk) and P(ord)<.05, including regions of chromosomes 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q, and 14p, and 19 consecutive bins with P(ord)<.05, additionally including regions of chromosomes 16q, 18q, 10p, 15q, 6q, and 17q. There is greater consistency of linkage results across studies than has been previously recognized. The results suggest that some or all of these regions contain loci that increase susceptibility to schizophrenia in diverse populations.
A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies.
Background: Multiple studies have shown that brain gene expression is disturbed in subjects suffering from schizophrenia. However, disentangling disease effects from alterations caused by medication is a challenging task. The main goal of this study is to find transcriptional alterations in schizophrenia that are independent of neuroleptic treatment.
We have completed a genome scan of a 12-generation, 3,400-member pedigree with schizophrenia. Samples from 210 individuals were collected from the pedigree. We performed an "affecteds-only" genome-scan analysis using 43 members of the pedigree. The affected individuals included 29 patients with schizophrenia, 10 with schizoaffective disorders, and 4 with psychosis not otherwise specified. Two sets of white-European allele frequencies were used-one from a Swedish control population (46 unrelated individuals) and one from the pedigree (210 individuals). All analyses pointed to the same region: D6S264, located at 6q25.2, showed a maximum LOD score of 3.45 when allele frequencies in the Swedish control population were used, compared with a maximum LOD score of 2.59 when the pedigree's allele frequencies were used. We analyzed additional markers in the 6q25 region and found a maximum LOD score of 6.6 with marker D6S253, as well as a 6-cM haplotype (markers D6S253-D6S264) that segregated, after 12 generations, with the majority of the affected individuals. Multipoint analysis was performed with the markers in the 6q25 region, and a maximum LOD score of 7.7 was obtained. To evaluate the significance of the genome scan, we simulated the complete analysis under the assumption of no linkage. The results showed that a LOD score >2.2 should be considered as suggestive of linkage, whereas a LOD score >3.7 should be considered as significant. These results suggest that a common ancestral region was inherited by the affected individuals in this large pedigree.
We have previously shown that chromosome 6q25-6q27 includes a susceptibility locus for schizophrenia in a large pedigree from northern Sweden. In this study, we fine-mapped a 10.7 Mb region, included in this locus, using 42 microsatellites or SNP markers. We found a 0.5 Mb haplotype, likely to be inherited identical by decent, within the large family that is shared among the majority of the patients (69%). A gamete competition test of this haplotype in 176 unrelated nuclear families from the same geographical area as the large family showed association to schizophrenia (empirical P-value 0.041). The only gene located in the region, the quaking homolog, KH domain RNA binding (mouse) (QKI), was investigated in human brain autopsies from 55 cases and 55 controls using a high-resolution mRNA expression analysis. Relative mRNA expression levels of two QKI splice variants were clearly downregulated in schizophrenic patients (P-value 0.0004 and 0.03, respectively). The function of QKI has not been studied in humans, but the mouse homolog is involved in neural development and myelination. In conclusion, we present evidence from three unrelated sample-sets that propose the involvement of the QKI gene in schizophrenia. The two family based studies suggest that there may be functional variants of the QKI gene that increase the susceptibility of schizophrenia in northern Sweden, whereas the case-control study suggest that splicing of the gene may be disturbed in schizophrenic patients from other geographical origins. Taken together, we propose QKI as a possible target for functional studies related to the role of myelination in schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.