Circulating IL-6 is a strong independent marker of increased mortality in unstable CAD and identifies patients who benefit most from a strategy of early invasive management.
Abstract-Activated platelets can express CD40 ligand (CD40L) and trigger inflammatory response and tissue factor (TF) expression in endothelial cells through interaction with CD40. This pathway is also important for T cell-induced monocyte and endothelial cell procoagulant activity. We have studied the potential role of the CD40-CD40L pathway in platelet-induced TF expression in a monocytic cell line and in whole-blood monocytes. In vitamin D 3 -differentiated U-937 cells, thrombin-stimulated platelets increased TF expression as measured by mRNA quantification, flow cytometry, and procoagulant activity. Maximum antigen expression occurred after 2 hours. Neutralizing anti-P-selectin antibody yielded a 50% suppression of procoagulant activity, whereas antibody to CD40L had no effect. In thrombin receptor activator-stimulated citrated blood, monocytes were up to 77% TF-positive, with peak expression after only 15 minutes. However, no TF mRNA was detectable at that time. Anti-P-selectin antibody reduced TF by 50%, whereas antibody to CD40L gave a 17% reduction. Thus, we conclude that P-selectin exposed on activated platelets induces the expression of TF in both U-937 cells and whole-blood monocytes but by different mechanisms. Platelet CD40L does not display any significant effect on U-937 cells but may be of some importance on whole-blood monocytes. This suggests a possible functional difference between U-937 and monocyte CD40. Another important finding in this study is the rapid appearance of surface TF on monocytes without detectable mRNA formation. This indicates that TF may be stored intracellularly in these cells and can be exposed on the surface independent of de novo protein synthesis.
Summary.Interleukin 4 (IL-4), IL-10 and IL-13 are all known to modulate several proinflammatory functions in human monocytes. They have also previously been shown to down-regulate lipopolysaccharide (LPS)-induced tissue factor (TF) expression in isolated cultured monocytes. In this study we investigated the effect of these three cytokines on the induction of monocytic TF in a whole blood environment at three levels: mRNA quantitation, surface antigen expression and procoagulant activity. We showed that IL-10 attenuated LPS-induced monocyte TF expression and activity in whole blood in a concentration-dependent manner, both when added to the blood prior to LPS and, although to a lesser extent, when added up to 1 h subsequent to LPS challenge. Maximum inhibition occurred at 5 ng/ml of IL-10 when the cytokine was added before LPS. IL-4 and IL-13, however, did not exhibit any inhibitory effect in the whole blood environment, contrary to the reported findings in cell culture experiments. Our results confirm the potential of IL-10 as an anti-inflammatory, TF-preventing drug, whereas the effects of IL-4 and IL-13 on monocytes in whole blood seem more complex, and require further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.