The position of scaphopods in molluscan phylogeny remains singularly contentious, with several sister relationships supported by morphological and phylogenomic data: Scaphopoda + Bivalvia (Diasoma), Scaphopoda + Cephalopoda (Variopoda), and Scaphopoda + Gastropoda. Nervous system architecture has contributed significant insights to reconstructing phylogeny in the Mollusca and other invertebrate groups, but a modern neurophylogenetic approach has not been applied to molluscs, hampered by a lack of clearly defined homologous characters that can be unequivocally compared across the radical body plan disparity among the living clades. We present the first three-dimensional reconstruction of the anterior nervous system of a scaphopod, Rhabdus rectius, using histological tomography. We also describe a new putative sensory organ, a paired and pigmented sensory mantle slit. This structure is restricted to our study species and not a general feature of scaphopods, but it forms an integral part of the description of the nervous system in R. rectius. It also highlights the potential utility of neuro-anatomical characters for multiple levels of phylogenetic inference beyond this study. This potential has not previously been exploited for the thorny problem of molluscan phylogeny. The neuroanatomy of scaphopods demonstrates a highly derived architecture that shares a number of key characters with the cephalopod nervous system, and supports a Scaphopoda + Cephalopoda grouping.
The deep sea comprises vast unexplored areas and is expected to conceal significant undescribed invertebrate species diversity. Deep waters may act as a refuge for many relictual groups, including elusive and enigmatic higher taxa, but the evolutionary pathways by which colonization of the deep sea has occurred have scarcely been investigated. Sister group relationships between shallow water and deep sea taxa have been documented in several invertebrate groups, but are unknown between amphibious/terrestrial and deep-sea species. Here we describe in full and interactive 3D morphoanatomical detail the new sea slug species Bathyhedyle boucheti n. sp., dredged from the continental slope off Mozambique. Molecular and morphological analyses reveal that it represents a novel heterobranch gastropod lineage which we establish as the new family Bathyhedylidae. The family is robustly supported as sister to the recently discovered panpulmonate acochlidian family Aitengidae, which comprises amphibious species living along the sea shore as well as fully terrestrial species. This is the first marine-epibenthic representative among hedylopsacean Acochlidiida, the first record of an acochlidian from deep waters and the first documented panpulmonate deep-sea slug. Considering a marine mesopsammic ancestor, the external morphological features of Bathyhedyle n. gen. may be interpreted as independent adaptations to a benthic life style in the deep sea, including the large body size, broad foot and propodial tentacles. Alternatively, the common ancestor of Bathyhedylidae and Aitengidae may have been a macroscopic amphibious or even terrestrial species. We hypothesize that oophagy in the common ancestor of Aitengidae and Bathyhedylidae might explain the impressive ecological and evolutionary flexibility in habitat choice in the Acochlidiida.
BackgroundThe visual systems in chelicerates are poorly understood, even though they show strong variation in eye and visual neuropil architecture, thus may provide valuable insights for the understanding of chelicerate phylogeny and eye evolution. Comparable morphological characters are desperately sought for reconstructions of the phylogeny of Chelicerata, especially with respect to Arachnida. So far, reliable data exist only for Pycnogonida, Xiphosura, Scorpiones, and Araneae. The few earlier studies of the organisation of the visual system in harvestmen are contradictory concerning the number, morphology, and position of the visual neuropils.ResultsWe undertook a descriptive and comparative analysis of the neuroanatomy of the visual system in several phalangid harvestmen species. Various traditional and modern methods were used that allow comparisons with previous results (cobalt fills, DiI/DiO labelling, osmium ethyl gallate procedure, and TEM). The R-cells (photoreceptor and arhabdomeric cells) in the eyes of Opiliones are linked to a first and a second visual neuropil. The first visual neuropil receives input from all R-cell axons, in the second only few R-cells terminate in the distal part. Hence, the second visual neuropil is subdivided in a part with direct R-cell input and a part without. The arcuate body is located in a subsequent position with direct contact to the second visual neuropil.ConclusionsThis re-examination comes to conclusions different from those of all previous studies. The visual system of phalangid Opiliones occupies an intermediate position between Pycnogonida, Xiphosura, and Scorpiones on the one side, and Araneae on the other side. The projection of the R-cells is similar to that in the former grouping, the general neuropil arrangement to that in the latter taxon. However, more research on the visual systems in other chelicerate orders is needed in order to draw inferences on phylogeny or eye evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.