Elevated expression levels of eukaryotic initiation factor 4E (eIF4E) promote cancer development and progression. MAP kinase interacting kinases (MNKs) modulate the function of eIF4E through the phosphorylation that is necessary for oncogenic transformation. Therefore, pharmacologic MNK inhibitors may provide a nontoxic and effective anticancer strategy. MNK1b is a truncated isoform of MNK1a that is active in the absence of stimuli. Using in vitro selection, high-affinity DNA aptamers to MNK1b were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Four groups of aptamers were identified, and the affinities of one representative for rMNK1b were determined using ELONA and quantitative polymerase chain reaction. Two aptamers, named apMNK2F and apMNK3R, had a lower Kd in the nmol/l range. The secondary structure of the selected aptamers was predicted using mFold, and the QGRS Mapper indicated the presence of potential G-quadruplex structures in both aptamers. The selected aptamers were highly specific against MNK1, showing higher affinity to MNK1b than to MNK1a. Interestingly, both aptamers were able to produce significant translation inhibition and prevent tumor cell proliferation and migration and colony formation in breast cancer cells. These results indicate that MNK1 aptamers have an attractive therapeutic potential.
Parasites of the genus Leishmania produce leishmaniasis which affects millions people around the world. Understanding the molecular characteristics of the parasite can increase the knowledge about the mechanisms underlying disease development and progression. Thus, the study of the molecular features of histones has been considered of particular interest because Leishmania does not condense the chromatin during mitosis and, consequently, a different role for these proteins in the biology of the parasite can be expected. Furthermore, the sequence divergences in the amino and in the carboxy-terminal domains of the kinetoplastid core histones convert them in potential diagnostic and/or therapeutics targets. Aptamers are oligonucleotide ligands that are selected in vitro by their affinity and specificity for the target as a consequence of the particular tertiary structure that they are able to acquire depending on their sequence. Development of high-affinity molecules with the ability to recognize specifically Leishmania histones is essential for the progress of this kind of study. Two aptamers which specifically recognize Leishmania infantum H2A histone were cloned from a previously obtained ssDNA enriched population. These aptamers were sequenced and subjected to an in silico analysis. ELONA, slot blot and Western blot were performed to establish aptamer affinity and specificity for LiH2A histone and ELONA assays using peptides corresponding to overlapped sequences of LiH2A were made mapping the aptamers:LiH2A interaction. As “proofs of concept”, aptamers were used to determine the number of parasites in an ELONA platform and to purify LiH2A from complex mixtures. The aptamers showed different secondary structures among them; however, both of them were able to recognize the same peptides located in a side of the protein. In addition, we demonstrate that these aptamers are useful for LiH2A identification and also may be of potential application as diagnostic system and as a laboratory tool with purification purpose.
MAP kinase interacting kinases (MNKs) modulate the function of oncogene eukaryotic initiation factor 4E (eIF4E) through phosphorylation, which is necessary for oncogenic transformation. MNK1 gives rise to two mRNAs and thus two MNK1 isoforms, named MNK1a and MNK1b. MNK1b, the splice variant of human MNK1a, is constitutively active and independent of upstream MAP kinases. In this study, we have analyzed the expression of both MNK1 isoforms in 69 breast tumor samples and its association with clinicopathologic/prognostic characteristics of breast cancer. MNK1a and MNK1b expression was significantly increased in tumors relative to the corresponding adjacent normal tissue (p < 0.001). In addition, MNK1b overexpression was found in most of the triple-negative tumors and was associated with a shorter overall and disease-free survival time. Overexpression of MNK1b in MDA-MB-231 cells induced an increase in the expression of the MCL1 antiapoptotic protein and promoted proliferation, invasion and colony formation. In conclusion, a high expression level of MNK1b protein could be used as a marker of poor prognosis in breast cancer patients and it could be a therapeutic target in triple-negative tumors.
Poor oxygenation (hypoxia) influences important physiological and pathological situations, including development, ischemia, stroke and cancer. Hypoxia induces protein synthesis inhibition that is primarily regulated at the level of initiation step. This regulation generally takes place at two stages, the phosphorylation of the subunit α of the eukaryotic initiation factor (eIF) 2 and the inhibition of the eIF4F complex availability by dephosphorylation of the inhibitory protein 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1). The contribution of each of them is mainly dependent of the extent of the oxygen deprivation. We have evaluated the regulation of hypoxia-induced translation inhibition in nerve growth factor (NGF)-differentiated PC12 cells subjected to a low oxygen concentration (0.1%) at several times. Our findings indicate that protein synthesis inhibition occurs primarily by the disruption of eIF4F complex through 4E-BP1 dephosphorylation, which is produced by the inhibition of the mammalian target of rapamycin (mTOR) activity via the activation of REDD1 (regulated in development and DNA damage 1) protein in a hypoxia-inducible factor 1 (HIF1)-dependent manner, as well as the translocation of eIF4E to the nucleus. In addition, this mechanism is reinforced by the increase in 4E-BP1 levels, mainly at prolonged times of hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.