Freshwater ecosystems host high levels of biodiversity but are also highly vulnerable to biological invasions. Aquatic Invasive Alien Plant Species (aIAPS) can cause detrimental effects on freshwater ecosystems and their services to society, raising challenges to decision-makers regarding their correct management. Spatially and temporally explicit information on the occurrence of aIAPS in dynamic freshwater systems is essential to implement efficient regional and local action plans. The use of unmanned aerial vehicle imagery synchronized with free Sentinel-2 multispectral data allied with classifier fusion techniques may support more efficient monitoring actions for non-stationary aIAPS. Here, we explore the advantages of such a novel approach for mapping the invasive water-hyacinth (Eichhornia crassipes) in the Cávado River (northern Portugal). Invaded and non-invaded areas were used to explore the evolution of spectral attributes of Eichhornia crassipes through a time series (processed by a super-resolution algorithm) that covers March 2021 to February 2022 and to build an occurrence dataset (presence or absence). Analysis of the spectral behavior throughout the year allowed the detection of spectral regions with greater capacity to distinguish the target plant from the surrounding environment. Classifier fusion techniques were implemented in the biomod2 predictive modelling package and fed with selected spectral regions to firstly extract a spectral signature from the synchronized day and secondly to identify pixels with similar reflectance values over time. Predictions from statistical and machine-learning algorithms were ensembled to map invaded spaces across the whole study area during all seasons with classifications attaining high accuracy values (True Skill Statistic, TSS: 0.932; Area Under the Receiver Operating Curve, ROC: 0.992; Kappa: 0.826). Our results provide evidence of the potential of our approach to mapping plant invaders in dynamic freshwater systems over time, applicable in the assessment of the success of control actions as well as in the implementation of long-term strategic monitoring.
Invasive alien species are a major driver of global environmental change. Escalating globalization processes such as international trade and long-distance transport have contributed to an increase in the ecological, economic, and sociocultural impacts of biological invasions. As a result, their management has become an increasingly relevant topic on environmental policy agendas. To better understand the role of policy in invasion science and to identify trends and gaps in policy-oriented research, a systematic literature review was conducted covering 2135 publications. The results highlight that international policy instruments are contributing to an increased interest in pursuing policy-oriented research. Specifically, key historical periods in policy development (e.g., the Convention on Biological Diversity’s COP10 in 2010) coincide with periods of active policy-focused research in invasion science. Research is, however, more applied to local scales (i.e., subnational, and national) and is more focused in places with high research capacity or where severe environmental or economic impacts are well documented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.