Vascular smooth muscle cell (VSMC) differentiation is an essential component of vascular development. These cells perform biosynthetic, proliferative, and contractile roles in the vessel wall. VSMCs are not terminally differentiated and are able to modulate their phenotype in response to changing local environmental cues. There is clear evidence that alterations in the differentiated state of the VSMC play a critical role in the pathogenesis of atherosclerosis and intimal hyperplasia, as well as in a variety of other major human diseases, including hypertension, asthma, and vascular aneurysms. The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms involved in controlling phenotypic switching of SMCs, with particular focus on examination of signaling pathway that regulate this process.
Vascular smooth muscle cells (VSMC) in mature, normal blood vessels exhibit a differentiated, quiescent, contractile morphology, but injury induces a phenotypic modulation toward a proliferative, dedifferentiated, migratory phenotype with upregulated extracellular matrix protein synthesis (synthetic phenotype), which contributes to intimal hyperplasia. The mTOR (the mammalian target of rapamycin) pathway inhibitor rapamycin inhibits intimal hyperplasia in animal models and in human clinical trials. We report that rapamycin treatment induces differentiation in cultured synthetic phenotype VSMC from multiple species. VSMC treated with rapamycin assumed a contractile morphology, quantitatively reflected by a 67% decrease in cell area. Total protein and collagen synthesis were also inhibited by rapamycin. Rapamycin induced expression of the VSMC differentiation marker contractile proteins smooth muscle (SM) alpha-actin, calponin, and SM myosin heavy chain (SM-MHC), as observed by immunoblotting and immunohistochemistry. Notably, we detected a striking rapamycin induction of calponin and SM-MHC mRNA, suggesting a role for mTOR in transcriptional control of VSMC gene expression. Rapamycin also induced expression of the cyclin-dependent kinase inhibitors p21(cip) and p27(kip), consistent with cell cycle withdrawal. Rapamycin inhibits mTOR, a signaling protein that regulates protein synthesis effectors, including p70 S6K1. Overexpression of p70 S6K1 inhibited rapamycin-induced contractile protein and p21(cip) expression, suggesting that this kinase opposes VSMC differentiation. In conclusion, we report that regulation of VSMC differentiation is a novel function of the rapamycin-sensitive mTOR signaling pathway.
The phenotypic plasticity of mature vascular smooth muscle cells (VSMCs) facilitates angiogenesis and wound healing, but VSCM dedifferentiation also contributes to vascular pathologies such as intimal hyperplasia. Insulin/insulin-like growth factor I (IGF-I) is unique among growth factors in promoting VSMC differentiation via preferential activation of phosphatidylinositol 3-kinase (PI3K) and Akt. We have previously reported that rapamycin promotes VSMC differentiation by inhibiting the mammalian target of rapamycin (mTOR) target S6K1. Here, we show that rapamycin activates Akt and induces contractile protein expression in human VSMC in an insulin-like growth factor I-dependent manner, by relieving S6K1-dependent negative regulation of insulin receptor substrate-1 (IRS-1). In skeletal muscle and adipocytes, rapamycin relieves mTOR/S6K1-dependent inhibitory phosphorylation of IRS-1, thus preventing IRS-1 degradation and enhancing PI3K activation. We report that this mechanism is functional in VSMCs and crucial for rapamycin-induced differentiation. Rapamycin inhibits S6K1-dependent IRS-1 serine phosphorylation, increases IRS-1 protein levels, and promotes association of tyrosine-phosphorylated IRS-1 with PI3K. A rapamycin-resistant S6K1 mutant prevents rapamycin-induced Akt activation and VSMC differentiation. Notably, we find that rapamycin selectively activates only the Akt2 isoform and that Akt2, but not Akt1, is sufficient to induce contractile protein expression. Akt2 is required for rapamycin-induced VSMC differentiation, whereas Akt1 appears to oppose contractile protein expression. The anti-restenotic effect of rapamycin in patients may be attributable to this unique pattern of PI3K effector regulation wherein anti-differentiation signals from S6K1 are inhibited, but pro-differentiation Akt2 activity is promoted through an IRS-1 feedback signaling mechanism. Vascular smooth muscle cells (VSMCs)3 maintain a phenotypic plasticity that is important in physiological processes such as arteriogenesis, and in pathological responses, including atherosclerosis, intimal hyperplasia, and restenosis. Mature VSMCs are quiescent and exhibit a differentiated, contractile phenotype. Differentiation status in vitro can be measured by expression of smooth muscle-specific contractile proteins, including calponin, caldesmon, and smooth muscle myosin heavy chain (SM-MHC) (1). In response to injury, or upon in vitro culture, VSMCs re-enter the cell cycle, proliferate, migrate toward attractants, down-regulate expression of contractile proteins, and up-regulate protein synthesis, particularly of the extracellular matrix. This de-differentiated phenotype is referred to as "synthetic" because of this property (1).VSMC de-differentiation and resultant intimal hyperplasia in response to vessel injury are common problems following vascular interventions such as angioplasty, stent placement, and bypass grafts. Since receiving FDA approval in 2003, the use of the mTOR inhibitor rapamycin on drug-eluting stents has had a profound impac...
Radiation induces tissue injury at the cellular level. The use of good fluoroscopic technique is imperative for physician and patient protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.