Transfer RNAs (tRNAs) are key molecules needed for the decoding of the genetic information at the ribosome.[1] The tRNAs contain the four canonical RNA bases plus a large set of modified nucleotides whose function in the tRNA charging and decoding process is largely unknown.[2] Queuosine (Q; 1) [3] and its galactosylated, mannosylated, or amino acid modified derivatives [4] (Scheme 1) are important hypermodified RNA bases present in the anticodon stem loop of various tRNAs. It is currently hypothesized that these base derivatives are needed to fine-regulate the translational process.[5]To enable investigation of the role that these hypermodified bases play during the translational process and to study their largely unknown biosynthesis, [6] efficient synthetic procedures for the modified bases and ultimately of tRNA containing such modified bases are a prerequisite.Herein we describe an efficient stereoselective synthesis of the hypermodified tRNA nucleoside queuosine [7] using a reductive amination of 7-deazaguanosine-aldehyde 3 with the cyclopentenylamine 2, [8] which is prepared from an allyl azide precursor (Scheme 1).The short synthesis of the allyl amine 2 from the allyl azide precursor 4, however, requires that the Mitsunobu reaction (Scheme 2, step e) [9] proceeds with a defined regio-(S N 2 vs. S N 2') and stereochemistry (inversion of configuration). In addition, the [3.3] sigmatropic rearrangement, which allyl azides such as 4 are prone to undergo, has to be controlled.[10] Indeed, owing to the efficient [3.3] sigmatropic rearrangement of allylic azides and the reported lack of regiocontrol of Mitsunobu aminations of allylic alcohols, [19] such a synthetic approach looks, at first, rather unattractive.The cyclopentenyl building block 2 was synthesized starting from d-(À)-ribose 5. Protection of the 2' and 3' hydroxy groups as an acetonide, conversion into the monoScheme 1. Chemical structures of queuosine (1), its derivatives, and key synthetic intermediates. Bz = benzoyl.Scheme 2. Synthesis of the cyclopentenylamine 2: a) 2,2-dimethoxypropane, MeOH, HClO 4 , acetone, 94 %; b) PCC (4.0 equiv), benzene, reflux, 46 %; c) (MeO) 2 P(O)CH 3 , nBuLi, THF, 0 8C, 56 %; d) NaBH 4 , CeCl 3 , MeOH, 0 8C, 95 %; e) DIAD, PPh 3 , HN 3 (1.3 m in toluene), THF, 0 8C; f) PPh 3 , THF, 0 8C, 72 % (65 % from 11) in two steps; g) toluoyl chloride, NEt 3 , CH 2 Cl 2 , 60 %. PCC = pyridinium chlorochromate, DIA-D = diisopropylazodicarboxylate.
Transfer-RNAs (tRNAs) sind Schlüsselmoleküle für den Prozess der Dekodierung genetischer Information im Ribosom.[1] Sie enthalten die vier kanonischen RNA-Basen und eine große Zahl an modifizierten Nucleotiden, deren Funktion im Prozess der tRNA-Beladung und -Dekodierung größtenteils unbekannt ist.[2] Queuosin (Q) 1 [3] und seine galactosylierten, mannosylierten und Aminosäure-modifizierten Derivate [4] (Schema 1) sind wichtige hypermodifizierte RNA-Basen, die in der Antikodonschleife verschiedener tRNAs vorliegen. Es wird derzeit vermutet, dass sie für die Feinregulierung des Translationsprozesses benötigt werden. [5] Will man die Aufgabe der hypermodifizierten Basen bei der Translation besser verstehen und ihre größtenteils unbekannte Biosynthese untersuchen, [6] benötigt man effiziente Syntheserouten zu diesen Basen und letztlich zur tRNA, in der sie enthalten sind.Wir beschreiben hier eine effiziente, stereoselektive Synthese des hypermodifizierten tRNA-Nucleosids Queuosin.[7] Dabei wird als Schlüsselschritt eine reduktive Aminierung des 7-Desazaguanosinaldehyds 3 mit dem Cyclopentenylamin 2, [8] das aus der Allylazid-Zwischenstufe 4 hervorgeht, durchgeführt (Schema 1).Die vorgestellte kurze Synthese des Allylamins 2 ausgehend von der Vorstufe 4 setzt jedoch voraus, dass die Mitsunobu-Reaktion (Schema 2, Stufe e) [9] nach einer definierten Regio-(S N 2 gegenüber S N 2') und Stereochemie (Umkehr der Konfiguration) abläuft. Zusätzlich muss die [3.3]-sigmatrope Umlagerung kontrolliert werden, der Allylazide wie 4 unterliegen.[10] Ein derartiger Ansatz scheint zunächst -bedingt durch die effiziente [3.3]-sigmatrope Umlagerung der Allylazide und die bekannte [19] fehlende Regiokontrolle der
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.