Although complete myocardial recovery after ventricular assist device (VAD) implantation is rather seldom, systematic search for recovery is worthwhile because for recovered patients weaning from VADs is feasible and can provide survival benefits with long-term freedom from heart failure (HF) recurrence, even if a chronic cardiomyopathy was the primary cause for the drug-refractory HF necessitating left ventricular (LVAD) or biventricular support (as bridge-to-transplantation or definitive therapy) and even if recovery remains incomplete.LVAD patients explanted for myoacardial recovery compared to those transplanted from LVAD support showed similar survival rates and a significant proportion of explanted patients can achieve cardiac and physical functional capacities that are within the normal range of healthy controls. In apparently sufficiently recovered patients, a major challenge remains still the pre-explant prediction of the weaning success which is meanwhile reliably possible for experienced clinicians. In weaning candidates, the combined use of certain echocardiography and right heart catheterization parameters recorded before VAD explantation can predict post-weaning cardiac stability with good accuracy. However, in the absence of standardization or binding recommendations, the protocols for assessment of native cardiac improvement and also the weaning criteria differ widely among centers. Currently there are still only few larger studies on myocardial recovery assessment after VAD implantation. Therefore, the weaning practice relies mostly on small case series, local practice patterns, and case reports, and the existing knowledge, as well as the partially differing recommendations which are based mainly on expert opinions, need to be periodically systematised. Addressing these shortcomings, our review aims to summarize the evidence and expert opinion on the evaluation of cardiac recovery during mechanical ventricular support by paying special attention to the reliability of the methods and parameters used for assessment of myocardial recovery and the challenges met in both evaluation of recovery and weaning decision making.
The joint efforts in the fields of surgery, medicine and biomedical engineering, sponsored by both the government and the industry, have led to the development of mechanical support devices that can provide reliable circulatory support, which can temporarily support a patient's circulation until either the heart recovers or until a new heart can be transplanted or permanently replace a failed heart. Their development has been driven by the shortage of donor organs. Various systems have eventually evolved for short or long-term support of patients suffering from cardiogenic and/or advanced heart failure (HF).Over time, several have been withdrawn from the market due to high rate of thromboembolism and pumprelated complications, but many others remained with modern principles of circulatory support proved to be durable and reliable. Hopefully, the ever-evolving technology will yield several devices aimed at their miniaturization, with an energy supply without risk of infection, a system which is simple to implant and to exchange, minimalization of thrombus formation by optimal interior pump design, new antithrombotic medications and a system with demand-based pump activity. It is important to remember that such devices are only implanted to keep a patient alive or in an immediate life-threatening stage. In such circumstances, attribution of aforementioned difficulties to pump limitations or to advanced disease states remains difficult.In the coming years, ventricular assist devices (VADs) could be the most common surgical preference for treating severe HF.
The evolution of heart transplantation neither begun nor ended with Barnard's first (1). Looking back, man imagined the possibility of transplantation for thousands of years. Greek mythology had many descriptions of chimeras, including animals with a head of a lion but the body of a goat (2). These creatures, if not exactly transplant recipients, did possess organs of more than one species and perhaps sparked the imagination of early scientists. Relished with icons and challenges, the evolution of cardiac transplantation marks one of the greatest victories in contemporary medicine.The most fascinating aspect about heart transplantation may not be its occurrence, but that its advancement underlies the unique collaboration of basic scientific experimentation, surgical technique and medical forethought.
The first and successful implantation of a ventricular assist device in 1990 has allowed an 8-yearold child with an end-stage heart failure to undergo a heart transplantation. This milestone paved the way to consider support with ventricular assist in the armamentarium of heart failure management in infants, children and adolescents. Several systems have evolved and faded owing to unacceptable complications.Indications and contraindications to implantation have been established. Anticoagulation management is still on its way to impeccability. Despite the challenges, issues and concerns revolving around ventricular assist devices, the system definitely supports pediatric patients with end-stage heart failure until heart transplantation and could allow recovery of the myocardium.
Over time, various surgical treatment strategies have evolved to manage advanced heart failure (HF). Scientific and technological breakthroughs through the last 50 years have put forward various surgical alternatives to patients with advanced HF encompassing surgical ventricular restoration to surgical gene therapy and stem cell replacement of the diseased ventricles. Organ-saving surgical options which used to be promising included dynamic cardiomyoplasty, partial resection of ventricle and cardiac wrapping with Acorn CorCap cardiac support device. These procedures were eventually abandoned due to negative outcomes and without proven disadvantages. Another organ-saving surgical option currently being considered but still make little sense is cardiac regeneration by stem cell therapy, i.e., cardiomyocyte restoration and replacement. Presently, the organ-saving surgical alternatives to treat end-stage HF are revascularization for ischemic cardiomyopathy, mitral valve surgery (repair or replacement) for ischemic mitral incompetence (IMI), left ventricular (LV) aneurysmectomy (surgical ventricular restoration) and mitral valve repair for IMI.These aforementioned procedures have become quite established approaches and with increasing experience are continuously being modified to improve outcome. Various mechanical circulatory support systems have emerged over time to improve functional status of patients with advanced HF, either as a bridge to heart transplantation or as a bridge to myocardial recovery. Likewise offered in those with contraindications to transplantation. Ventricular assist devices (VAD) can keep patients alive until an eventual transplantation. This article reviews the variety of the myriad of alternative organ-saving surgical alternatives that have been available or are currently available provided to patients with end-stage HF, their advantages and deficiencies, as well as prospects in HF therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.