High circulating fibroblast growth factor 23 (FGF23) levels are probably a major risk factor for cardiovascular disease in chronic kidney disease. FGF23 interacts with the receptor FGFR4 in cardiomyocytes inducing left ventricular hypertrophy. Moreover, in the liver FGF23 via FGFR4 increases the risk of inflammation which is also found in chronic kidney disease. In contrast, X-linked hypophosphatemia is characterized by high FGF23 circulating levels due to loss of function mutations of the phosphate-regulating gene with homologies to an endopeptidase on the X chromosome (PHEX), but is not characterized by high cardiovascular morbidity. Here we used a novel murine X-linked hypophosphatemia model, the Phex mouse line, bearing an amino acid substitution (p.Cys733Arg) to test whether high circulating FGF23 in the absence of renal injury would trigger cardiovascular disease. As X-linked hypophosphatemia patient mimics, these mice show high FGF23 levels, hypophosphatemia, normocalcemia, and low/normal vitamin D levels. Moreover, these mice show hyperparathyroidism and low circulating soluble αKlotho levels. At the age of 27 weeks we found no left ventricular hypertrophy and no alteration of cardiac function as assessed by echocardiography. These mice also showed no activation of the calcineurin/NFAT pathway in heart and liver and no tissue and systemic signs of inflammation. Importantly, blood pressure, glomerular filtration rate and urea clearance were similar between genotypes. Thus, the presence of high circulating FGF23 levels alone in the absence of renal impairment and normal/high phosphate levels is not sufficient to cause cardiovascular disease.
Fibroblast growth factor 23 (FGF23) is a main regulator of mineral homeostasis. Low and high circulating FGF23 levels are associated with bone, renal, cardiovascular diseases, and increased mortality. Understanding the factors and signaling pathways affecting FGF23 levels is crucial for the management of these diseases and their complications. Here, we show that activation of the Jak1/Stat3 signaling pathway leads to inflammation in liver and to an increase in hepatic FGF23 synthesis, a key hormone in mineral metabolism. This increased synthesis leads to massive C‐terminal FGF23 circulating levels, the inactive C‐terminal fragment, and increased intact FGF23 levels, the active form, resulting in imbalanced production and cleavage. Liver inflammation does not lead to activation of the calcineurin‐NFAT pathway, and no signs of systemic inflammation could be observed. Despite the increase of active intact FGF23, excessive C‐terminal FGF23 levels block the phosphaturic activity of FGF23. Therefore, kidney function and renal αKlotho expression are normal and no activation of the MAPK pathway was detected. In addition, activation of the Jak1/Stat3 signaling pathway leads to high calcitriol levels and low parathyroid hormone production. Thus, JAK1 is a central regulator of mineral homeostasis. Moreover, this study also shows that in order to assess the impact of high FGF23 levels on disease and kidney function, the source and the balance in FGF23 production and cleavage are critical.
Background Phosphate intake has increased in the last decades due to a higher consumption of processed foods. This higher intake is detrimental for patients with chronic kidney disease, increasing mortality and cardiovascular disease risk and accelerating kidney dysfunction. Whether a chronic high phosphate diet is also detrimental for the healthy population is still under debate. Methods We fed healthy mature adult mice over a period of one year with either a high (1.2% w/w) or a standard (0.6% w/w) phosphate diet, and investigated the impact of a high phosphate diet on mineral homeostasis, kidney function and bone health. Results The high phosphate diet increased plasma phosphate, parathyroid hormone (PTH) and calcitriol levels, with no change in fibroblast growth factor 23 levels. Urinary phosphate, calcium and ammonium excretion were increased. Measured glomerular filtration rate was apparently unaffected, while blood urea was lower and urea clearance was higher in animals fed the high phosphate diet. No change was observed in plasma creatinine levels. Blood and urinary pH were more acidic paralleled by higher bone resorption observed in animals fed a high phosphate diet. Total and cortical bone mineral density was lower in animals fed a high phosphate diet and this effect is independent of the higher PTH levels observed. Conclusions A chronic high phosphate intake did not cause major renal alterations, but affected negatively bone health, increasing bone resorption and decreasing bone mineral density.
Kidneys are key regulators of phosphate homeostasis. Biallelic mutations of the renal Na+/phosphate cotransporter SLC34A1/NaPi-IIa cause idiopathic infantile hypercalcemia, whereas monoallelic mutations were frequently noted in adults with kidney stones. Genome-wide-association studies identified SLC34A1 as a risk locus for chronic kidney disease. Pathogenic mutations in SLC34A1 are present in 4% of the general population. Here, we characterize a mouse model carrying the 91del7 in-frame deletion, a frequent mutation whose significance remains unclear. Under normal dietary conditions, 12 weeks old heterozygous and homozygous males have similar plasma and urinary levels of phosphate as their wild type (WT) littermates, and comparable concentrations of parathyroid hormone, fibroblast growth factor 23 (FGF-23) and 1,25(OH)2 vitamin D3. Renal phosphate transport, and expression of NaPi-IIa and NaPi-IIc cotransporters, was indistinguishable in the three genotypes. Challenging mice with low dietary phosphate did not result in differences between genotypes with regard to urinary and plasma phosphate. Urinary and plasma phosphate, plasma FGF-23 and expression of cotransporters were similar in all genotypes after weaning. Urinary phosphate and bone mineral density were also comparable in 300 days old WT and mutant mice. In conclusion, mice carrying the 91del7 truncation do not show signs of impaired phosphate homeostasis.
Scope In the last decades, dietary phosphate intake has increased due to a higher consumption of ultraprocessed food. This higher intake has an impact on body composition and health state. Recently, this study finds that a high chronic phosphate diet leads to no major renal alterations, but negatively affects parameters of bone health probably due to the chronic acid load. Here the effect of high phosphate consumption on parameters of energy metabolism is assessed. Methods and Results Healthy mature adult mice are fed for 1 year or 4 months with either a standard (0.6 % w/w) or a high phosphate (1.2 % w/w) diet. Males and females of two different genetic backgrounds are investigated. Mice feed the high phosphate diet show an attenuated body‐weight gain, lower respiratory exchange ratio, decreased body fat mass, and increased lean‐to‐fat mass ratio. Moreover, the high phosphate diet leads to fasting hypoglycemia with no differences in the glucose response to an oral glucose tolerance test. Triglycerides and cholesterol in blood are similar independently of dietary phosphate content. However, 1‐methylhistidine is lower in animals feed a chronic high phosphate intake. Conclusions High phosphate diet attenuates body weight gain, but induces hypoglycemia and may alter muscle homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.