The long-run consumption risk (LRR) model is a promising approach to resolve prominent asset pricing puzzles. The simulated method of moments (SMM) provides a natural framework to estimate its deep parameters, but caveats concern model solubility and weak identification. We propose a twostep estimation strategy that combines GMM and SMM, and for which we elicit informative macroeconomic and financial moment matches from the LRR model structure. In particular, we exploit the persistent serial correlation of consumption and dividend growth and the equilibrium conditions for market return and risk-free rate, as well as the model-implied predictability of the risk-free rate. We match analytical moments when possible and simulated moments when necessary and determine the crucial factors required for both identification and reasonable estimation precision. A simulation study-the first in the context of long-run risk modeling-delineates the pitfalls associated with SMM estimation of a non-linear dynamic asset pricing model. Our study provides a blueprint for successful estimation of the LRR model. Key words:asset pricing, long-run risk, simulated method of moments JEL: C58, G10, G12 * We are grateful to H. Hasseltoft for sharing his Matlab code for the computation of the endogenous LRR parameters and to J. Krause for providing a Matlab implementation of the CMAES algorithm. We retain the responsibility for all remaining errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.