In the vascular system, circulating tumor cells interact with endothelial cells. Tumor-endothelial cross-talk transforms the intravascular milieu to a prothrombotic, proinflammatory, and cell-adhesive state called endothelial cell activation (ECA). In the present study, we analyze the potential of metastatic tumor-derived soluble factors to transform the vascular endothelium into a prothrombotic and proinflammatory activated state. Supernatant from cultured melanoma and colon cancer cells (A375, WM9, A7, and HT-29) induced an acute activation of macrovascular and microvascular endothelial cells (human umbilical vein endothelial cells and human dermal microvascular endothelial cells) as shown by intracellular calcium flux and secretion of von Willebrand factor and interleukin-8, all markers of acute ECA. This process was inhibited using specific proteinase-activated receptor 1 (PAR1) inhibitors (RWJ-58259 and SCH-79797), indicating a mediating role for endothelial thrombin receptors. Immunofluorescence, Western blot analysis, and collagenase activity assay of tumor cells and culture supernatant revealed the presence of matrix metalloproteinase-1 (MMP-1), a recently described activator of PAR1. Inhibition of MMP-1 in supernatant from cultured tumor cells significantly attenuated ECA. Additional studies using isolated human MMP-1 (5 nmol/L) proved the presence of a functional MMP-1/PAR1 axis in tumor-endothelial communication. These findings show a new pathway of tumor-endothelial cross-talk via an intravascular MMP1/PAR1 axis in microvascular and macrovascular endothelium. Inhibition of this cross-talk may be a powerful means to prevent tumor-induced ECA and thus thrombotic and inflammatory cell adhesion. (Cancer Res 2006; 66(15): 7766-74)
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that cleave and degrade a wide spectrum of extracellular matrix components. By enhancing turnover of extracellular matrix, MMP activity is also known to play a key role in tumor cell invasion. Because extracellular protease activity requires efficient release of these proteases to the cellular surface, we investigated storage, transport, and exocytosis of MMP-2 and MMP-9 in human melanoma cells using immunofluorescence, electrical, and biochemical techniques. Immunolabeling of melanoma cells with antibodies specific for MMP-2 and MMP-9 led to the identification of two distinct populations of small cytoplasmatic vesicles containing MMP-2 or MMP-9, respectively. In combination with ␣-tubulin-specific antibodies, both vesicle populations were found to be aligned along the microtubular network. Moreover, the molecular motor protein kinesin is shown to be localized on most of these vesicles, providing evidence that the identified vesicles are actively propelled along microtubules toward the plasma membrane. The functional relevance of these findings is demonstrated using low dosage (5.9 nmol/L) of paclitaxel to affect the microtubular function of melanoma cells. Although cell proliferation is not altered, paclitaxel treatment impairs secretion of MMP-2/MMP-9 and significantly reduces invasive activity in our new cell invasion assay. In conclusion, we demonstrate in melanoma cells that microtubule-dependent traffic of MMP-containing vesicles and exocytosis are critical steps for invasive behavior and therefore are potential targets for specific antitumor drugs.
This study demonstrates an innovative application of atomic force microscopy (AFM). The combination of high-resolution AFM technology and tape stripping is presented as a tool for the structure analysis of human stratum corneum (SC) at a nanometer scale. Topographic images with a vertical resolution of about 10 nm of the SC are presented. Topographical and structural differences between aged and young skin can be observed. Aged skin SC is characterized by an increased single-cell surface area, prominent intercellular gaps and enhanced cell surface roughness. The use of AFM in combination with other already established methods, e.g. tape stripping in the field of dermatological research will give new insights to the structure, function and morphodynamics of SC.
Reperfusion after ischemic conditions induces massive endothelial cell (EC) activation, an initial step of reperfusion injury. Reperfusion is characterized by reoxygenation, realkalinization and a localized increase of inflammatory stimuli. In this study, we focused on the influence of extracellular realkalinization on human umbilical vein endothelial cell (HUVEC) activation. We examined intracellular pH (pH(in)) and intracellular free calcium concentration ([Ca(2+)](in)), a second messenger known to mediate von Willebrand factor (VWF) exocytosis in endothelium, upon realkalinization. Furthermore, we measured the agonist-stimulated exocytosis of VWF, Interleukin-8 and soluble P-selectin (sP-Selectin) as markers of EC activation. To verify a morphological correlate of EC activation, we finally observed platelet-endothelial adherence during realkalinization using shear flow. Realkalinization of HUVEC was simulated by switching from bicarbonate buffered Ringer solution of an acidotic pH(ex) of 6.4 to a physiologic pH(ex) of 7.4. Extracellular realkalinization was accompanied by pH(in) recovery from 6.5 to 7.2 within 10 min. Application of cariporide, an inhibitor of the Na(+)/H(+) exchanger subtype 1 (NHE), during extracellular realkalinization significantly delayed the early kinetics of intracellular realkalinization. Histamine stimulated [Ca(2+)](in) was significantly increased upon realkalinization compared to control cells. Also agonist-stimulated release of VWF, Interleukin-8 and sP-Selectin was massively enhanced during pH(in) recovery in comparison to control. Furthermore, we observed an increased platelet binding to endothelium. Interestingly, each of these realkalinization-induced effects were significantly reduced by early application of cariporide. Therefore, delay of acute NHE-dependent pH(in) recovery may represent a promising mechanism for inhibition of EC activation upon reperfusion.
Objective. Synovial fibroblasts (SFs) contribute to several aspects of the pathogenesis of rheumatoid arthritis (RA) and have been implicated most prominently in the progressive destruction of articular cartilage. Targeting the invasive phenotype of RASFs has therefore gained increasing attention, but the precise measurement of their invasive capacity and the evaluation of potential treatment effects constitute a challenge that needs to be addressed. This study used a novel in vitro invasion assay based on the breakdown of transepithelial electrical resistance to determine the course of fibroblast invasion into extracellular matrix.Methods. A matrix-associated transepithelial resistance invasion (MATRIN) assay was used to assess SFs from patients with RA in comparison with SFs from patients with osteoarthritis (OA). The SFs were grown on a commercially available collagen mix that was placed onto the upper side of a Transwell polycarbonate membrane. In addition, freshly isolated cartilage extracts were studied to assess the conditions in vivo. Under this membrane, a monolayer of MDCK-C7 cells was seeded to create a high electrical resistance.Results. Invasion of fibroblasts into the matrix affected the integrity of the MDCK-C7 monolayer and led to a measurable decrease and subsequent breakdown of electrical resistance. Unlike in the assay with OASFs, which did not achieve a breakdown of resistance up to 72 hours, RASFs exhibited a pronounced invasiveness in this assay, with a 50% breakdown after 42 hours. Treatment of fibroblasts with either a matrix metalloproteinase inhibitor or antibodies against 1 integrin significantly reduced the invasiveness of RASFs.Conclusion. The MATRIN assay is a valuable and sensitive biologic assay system that can be used to determine precisely the invasive potential of RASFs in vitro, and thus would be suitable for screening antiinvasion compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.