Ribonucleic acids (RNA) frequently associate with proteins in many biological processes to form more or less stable complex structures. The characterization of RNA–protein complex structures and binding interfaces by nuclear magnetic resonance (NMR) spectroscopy, X‐ray crystallography, or strategies based on chemical crosslinking, however, can be quite challenging. Herein, we have explored the use of an alternative method, native top‐down mass spectrometry (MS), for probing of complex stoichiometry and protein binding sites at the single‐residue level of RNA. Our data show that the electrostatic interactions between HIV‐1 TAR RNA and a peptide comprising the arginine‐rich binding region of tat protein are sufficiently strong in the gas phase to survive phosphodiester backbone cleavage of RNA by collisionally activated dissociation (CAD), thus allowing its use for probing tat binding sites in TAR RNA by top‐down MS. Moreover, the MS data reveal time‐dependent 1:2 and 1:1 stoichiometries of the TAR–tat complexes and suggest structural rearrangements of TAR RNA induced by binding of tat peptide.
Nuclear export complexes composed of rev response element (RRE) ribonucleic acid (RNA) and multiple molecules of rev protein are promising targets for the development of therapeutic strategies against human immunodeficiency virus type 1 (HIV-1), but their assembly remains poorly understood. Using native mass spectrometry, we show here that rev initially binds to the upper stem of RRE IIB, from where it is relayed to binding sites that allow for rev dimerization. The newly discovered binding region implies initial rev recognition by nucleotides that are not part of the internal loop of RRE stem IIB RNA, which was previously identified as the preferred binding region. Our study highlights the unique capability of native mass spectrometry to separately study the binding interfaces of RNA/protein complexes of different stoichiometry, and provides a detailed understanding of the mechanism of RRE/rev association with implications for the rational design of potential drugs against HIV-1 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.