Targeting the interaction between the SARS-CoV-2 Spike protein and the human ACE2 receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer generated scaffolds were either built around an ACE2 helix that interacts with the Spike receptor binding domain (RBD), or docked against the RBD to identify new binding modes, and their amino acid sequences designed to optimize target binding, folding and stability. Ten designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked ARS-CoV-2 infection of Vero E6 cells with IC 50 values between 24 pM and 35 nM; The most potent, with new binding modes, are 56 and 64 residue proteins (IC 50 ~ 0.16 ng/ml). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.
We describe a general computational method for designing proteins that bind a surface patch of interest on a target macromolecule. Favorable interactions between disembodied amino-acid residues and the target surface are identified and used to anchor de novo designed interfaces. The method was used to design proteins that bind a conserved surface patch on the stem of the influenza hemagglutinin (HA) from the 1918 H1N1 pandemic virus. After affinity maturation, two of the designed proteins, HB36 and HB80, bind H1 and H5 HAs with low-nanomolar affinity. Further, HB80 inhibits the HA fusogenic conformational changes induced at low pH. The crystal structure of HB36 in complex with 1918/H1 HA revealed that the actual binding interface is nearly identical to that in the computational design model. Such designed proteins may be useful for both diagnostics and therapeutics.
Macromolecular modeling and design are increasingly useful in basic research, biotechnology, and teaching. However, the absence of a user-friendly modeling framework that provides access to a wide range of modeling capabilities is hampering the wider adoption of computational methods by non-experts. RosettaScripts is an XML-like language for specifying modeling tasks in the Rosetta framework. RosettaScripts provides access to protocol-level functionalities, such as rigid-body docking and sequence redesign, and allows fast testing and deployment of complex protocols without need for modifying or recompiling the underlying C++ code. We illustrate these capabilities with RosettaScripts protocols for the stabilization of proteins, the generation of computationally constrained libraries for experimental selection of higher-affinity binding proteins, loop remodeling, small-molecule ligand docking, design of ligand-binding proteins, and specificity redesign in DNA-binding proteins.
The design of proteins that bind to a specific site on the surface of a target protein using no information other than the three-dimensional structure of the target remains a challenge1–5. Here we describe a general solution to this problem that starts with a broad exploration of the vast space of possible binding modes to a selected region of a protein surface, and then intensifies the search in the vicinity of the most promising binding modes. We demonstrate the broad applicability of this approach through the de novo design of binding proteins to 12 diverse protein targets with different shapes and surface properties. Biophysical characterization shows that the binders, which are all smaller than 65 amino acids, are hyperstable and, following experimental optimization, bind their targets with nanomolar to picomolar affinities. We succeeded in solving crystal structures of five of the binder–target complexes, and all five closely match the corresponding computational design models. Experimental data on nearly half a million computational designs and hundreds of thousands of point mutants provide detailed feedback on the strengths and limitations of the method and of our current understanding of protein–protein interactions, and should guide improvements of both. Our approach enables the targeted design of binders to sites of interest on a wide variety of proteins for therapeutic and diagnostic applications.
The CAPRI and CASP prediction experiments have demonstrated the power of community wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring the power of community wide experiments to bear on a very challenging protein design problem that provides a complementary but equally fundamental test of current understanding of protein-binding thermodynamics. We have generated a number of designed protein-protein interfaces with very favorable computed binding energies but which do not appear to be formed in experiments, suggesting there may be important physical chemistry missing in the energy calculations. 28 research groups took up the challenge of determining what is missing: we provided structures of 87 designed complexes and 120 naturally occurring complexes and asked participants to identify energetic contributions and/or structural features that distinguish between the two sets. The community found that electrostatics and solvation terms partially distinguish the designs from the natural complexes, largely due to the non-polar character of the designed interactions. Beyond this polarity difference, the community found that the designed binding surfaces were on average structurally less embedded in the designed monomers, suggesting that backbone conformational rigidity at the designed surface is important for realization of the designed function. These results can be used to improve computational design strategies, but there is still much to be learned; for example, one designed complex, which does form in experiments, was classified by all metrics as a non-binder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.