As recently discovered, matriptase-2, a type II transmembrane serine protease, plays a crucial role in body iron homeostasis by down-regulating hepcidin expression, which results in increased iron levels. Thus, matriptase-2 represents a novel target for the development of enzyme inhibitors potentially useful for the treatment of systemic iron overload (hemochromatosis). A comparative three-dimensional model of the catalytic domain of matriptase-2 was generated and utilized for structure-based virtual screening in combination with similarity searching and knowledge-based compound design. Two N-protected dipeptide amides containing a 4-amidinobenzylamide as P1 residue (compounds 1 and 3) were identified as the first small molecule inhibitors of matriptase-2 with K i values of 170 and 460 nM, respectively. An inhibitor of the closely related protease matriptase (compound 2, K i = 220 nM), with more than 50-fold selectivity over matriptase-2, was also identified.
Matriptase-2 is a member of the TTSPs (type II transmembrane serine proteases), an emerging class of cell surface proteases involved in tissue homoeostasis and several human disorders. Matriptase-2 exhibits a domain organization similar to other TTSPs, with a cytoplasmic N-terminus, a transmembrane domain and an extracellular C-terminus containing the non-catalytic stem region and the protease domain. To gain further insight into the biochemical functions of matriptase-2, we characterized the subcellular localization of the monomeric and multimeric form and identified cell surface shedding as a defining point in its proteolytic processing. Using HEK (human embryonic kidney)-293 cells, stably transfected with cDNA encoding human matriptase-2, we demonstrate a cell membrane localization for the inactive single-chain zymogen. Membrane-associated matriptase-2 is highly N-glycosylated and occurs in monomeric, as well as multimeric, forms covalently linked by disulfide bonds. Furthermore, matriptase-2 undergoes shedding into the conditioned medium as an activated two-chain form containing the catalytic domain, which is cleaved at the canonical activation motif, but is linked to a released portion of the stem region via a conserved disulfide bond. Cleavage sites were identified by MS, sequencing and mutational analysis. Interestingly, cell surface shedding and activation of a matriptase-2 variant bearing a mutation at the active-site serine residue is dependent on the catalytic activity of co-expressed or co-incubated wild-type matriptase-2, indicating a transactivation and trans-shedding mechanism.
Matriptase-2, a recently identified cell surface protease, is the key enzyme of iron homoeostasis modulating the expression of the liver peptide hormone hepcidin. HAI (hepatocyte growth factor activator inhibitor) types 1 and 2 (HAI-1 and HAI-2 respectively) have been shown to inhibit the close homologue, i.e. matriptase. By co-expressing matriptase-2 and the inhibitor HAI-2 we have identified HAI-2 displaying high inhibitory potential against matriptase-2 at the cell surface as well as in conditioned medium. Accordingly, complex formation between matriptase-2 and HAI-2 was demonstrated by isolation of the complex via immobilizing either HAI-2 or matriptase-2 from lysates and conditioned medium of co-expressing cells. Furthermore, HAI-2 indirectly influences the expression of the hepcidin-encoding gene HAMP. The inhibitor abrogates the matriptase-2-mediated suppression of HAMP expression, presumably by inhibiting the supposed potential of matriptase-2 to cleave membrane-bound HJV (haemojuvelin). Taken together, the results of the present study have characterized HAI-2 as an inhibitor of matriptase-2 that modulates the synthesis of hepcidin and provides new insights into the regulatory mechanism of iron homoeostasis, with clinical importance for a treatment of iron overload diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.