Vascular calcification is highly prevalent in patients with chronic hemodialysis. Increased acetatemia during hemodialysis sessions using acetate-acidified bicarbonate has also been associated with several abnormalities, By contrast, these abnormalities were not induced by citrate-acidified bicarbonate dialysis. Moreover, citrate is biocompatible alternative to acetate in dialysis fluid. However, the effects of citrate on vascular calcification during hemodialysis had not been studied in detail. This study analyzed herein the effects of acetate- or citrate-acidified bicarbonate dialysis on vascular calcification. Citrate has been shown to inhibit calcification in urine in hemodialysis patients. Therefore, our hypothesis is that citrate-acidified bicarbonate dialysis could reduce vascular calcification. Blood samples before and after hemodialysis from patients on acetate- or citrate-acidified bicarbonate dialysis were collected in heparin-containing tubes (n = 35 and n = 25 respectively). To explore the effect of pre- and post-dialysis plasmatic bicarbonate and citrate on vascular calcification, rats aortic rings cultured ex vivo in Minimum Essential Medium containing 0.1% FBS and 45-calcium as radiotracer were used (n = 24). After 7 days of incubation aortic rings were dried, weighed and radioactivity was measured via liquid scintillation counting. Bicarbonate levels increase calcium accumulation in rat aortic wall in a dose-response manner (pH = 7.4). Moreover, citrate prevents calcium accumulation, with a mean inhibitor concentration (IC 50 ) value of 733 µmol/L. During acetate-acidified bicarbonate dialysis, bicarbonate and citrate levels in plasma increase (22.29 ± 3.59 versus 28.63 ± 3.56 mmol/L; p < 0.001) and decrease (133.3 ± 53.6 versus 87.49 ± 32.3 µmol/L, p < 0.001), respectively. These changes in pos-hemodialysis plasma significantly (p < 0.001) alter calcium accumulation in the aortic wall (38.9% higher). Moreover, citrate-acidified bicarbonate dialysis increases post-hemodialysis citrate levels 5-fold (145 ± 79.8 versus 771.6 ± 184.3 µmol/L), reducing calcium accumulation in the aortic wall. Citrate-acidified bicarbonate dialysis reduces plasmatic calcium and pH variations during dialysis session (Δ[Ca 2+ ] = −0.019 ± 0.089; ΔpH = 0.098 ± 0.043) respect to acetate-acidified bicarbonate dialysis (Δ[Ca 2+ ] = 0.115 ± 0.118; ΔpH = 0.171 ± 0.078). To our knowledge, our study is the first to show that citrate protects against calcium accumulation in rat aortic walls ex vivo . Therefore, citrate-acidified bicarbonate dialysis may be an alternative approach to reduce calcification in hemodialysis patients without additional cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.