Political scientists generally derive their quantitative methodologies from two disparate traditions: econometric or psychometric. The psychometric tradition has made a lasting impact on political analysis through attention to issues of measurement. Measurement issues are particularly troublesome to political scientists because many interesting concepts are either latent or multidimensional. On the other hand, the econometric tradition has provided political scientists with a means of coping with macrolevel phenomena. In studying macrophenomena, the problem of few cases (there is only one American economy, for example) is handled by using longitudinal analysis. Econometrics provided tools for coping with challenges that longitudinal analysis posed for regression analysis.
Digital recreations of the past, and of the deceased, are part of the Internet’s present. They circulate within social networks where logics of connection and connectivity underpin increasingly performative memory work. In this article we explore these developments through a case study of the MyHeritage deep learning feature, Deep Nostalgia. Our analysis is informed by a close critical study of Deep Nostalgia creations, and discourses circulating around them, shared on Twitter during the two-week period following its launch, February 2021 (n.6935). We examine how memory is evoked, framed, re-worked and distorted through algorithmic processes, and within social networks in particular, and explore what this tells us about peoples' need to connect with their pasts. First, we analyse how the shift from photo to video ‘revives’ the dead via a process that we have termed ‘remediated memory’. Second, we explore the affective dimensions and resonances of Deep Nostalgia creations. In doing so, we introduce the concept of ‘algorithmic nostalgia’ to describe the ways nostalgia is generated, organised and exploited through Deep Nostalgia’s automated and recursive algorithmic mechanisms. Third, we interrogate the ways social media logics shape the use and influence of these outputs. Our study’s scholarly contribution is at the intersection of memory, automation, and algorithms. We highlight the importance of studying the ambivalence of emerging media at their nexus with memory studies and, critically, of attending to the ways corporate interests increasingly shape – and assimilate – these activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.