Blood pressure is maintained within a normal physiological range by a sophisticated regulatory mechanism. Baroreceptors serve as a frontline sensor to detect the change in blood pressure. Nerve signals are then sent to the cardiovascular control centre in the brain in order to stimulate baroreflex responses. Here, we identify TRPC5 channels as a mechanical sensor in aortic baroreceptors. In Trpc5 knockout mice, the pressure-induced action potential firings in the afferent nerve and the baroreflex-mediated heart rate reduction are attenuated. Telemetric measurements of blood pressure demonstrate that Trpc5 knockout mice display severe daily blood pressure fluctuation. Our results suggest that TRPC5 channels represent a key pressure transducer in the baroreceptors and play an important role in maintaining blood pressure stability. Because baroreceptor dysfunction contributes to a variety of cardiovascular diseases including hypertension, heart failure and myocardial infarction, our findings may have important future clinical implications.
Mechanical forces exerted on cells impose stress on the plasma membrane. Cells sense this stress and elicit a mechanoelectric transduction cascade that initiates compensatory mechanisms. Mechanosensitive ion channels in the plasma membrane are responsible for transducing the mechanical signals to electrical signals. However, the mechanisms underlying channel activation in response to mechanical stress remain incompletely understood. Transient Receptor Potential (TRP) channels serve essential functions in several sensory modalities. These channels can also participate in mechanotransduction by either being autonomously sensitive to mechanical perturbation or by coupling to other mechanosensory components of the cell. Here, we investigated the response of a TRP family member, TRPC5, to mechanical stress. Hypoosmolarity triggers Ca2+ influx and cationic conductance through TRPC5. Importantly, for the first time we were able to record the stretch-activated TRPC5 current at single-channel level. The activation threshold for TRPC5 was found to be 240 mOsm for hypoosmotic stress and between −20 and −40 mmHg for pressure applied to membrane patch. In addition, we found that disruption of actin filaments suppresses TRPC5 response to hypoosmotic stress and patch pipette pressure, but does not prevent the activation of TRPC5 by stretch-independent mechanisms, indicating that actin cytoskeleton is an essential transduction component that confers mechanosensitivity to TRPC5. In summary, our findings establish that TRPC5 can be activated at the single-channel level when mechanical stress on the cell reaches a certain threshold.
Diaphanous (DIAPH) three (DIAPH3) is a member of the formin proteins that have the capacity to nucleate and elongate actin filaments and, therefore, to remodel the cytoskeleton. DIAPH3 is essential for cytokinesis as its dysfunction impairs the contractile ring and produces multinucleated cells. Here, we report that DIAPH3 localizes at the centrosome during mitosis and regulates the assembly and bipolarity of the mitotic spindle. DIAPH3-deficient cells display disorganized cytoskeleton and multipolar spindles. DIAPH3 deficiency disrupts the expression and/or stability of several proteins including the kinetochore-associated protein SPAG5. DIAPH3 and SPAG5 have similar expression patterns in the developing brain and overlapping subcellular localization during mitosis. Knockdown of SPAG5 phenocopies DIAPH3 deficiency, whereas its overexpression rescues the DIAHP3 knockdown phenotype. Conditional inactivation of Diaph3 in mouse cerebral cortex profoundly disrupts neurogenesis, depleting cortical progenitors and neurons, leading to cortical malformation and autistic-like behavior. Our data uncover the uncharacterized functions of DIAPH3 and provide evidence that this protein belongs to a molecular toolbox that links microtubule dynamics during mitosis to aneuploidy, cell death, fate determination defects, and cortical malformation.
We compared the Ca2+ responses to reactive oxygen species (ROS) between mouse endothelial cells derived from large-sized arteries, aortas (aortic ECs), and small-sized arteries, mesenteric arteries (MAECs). Application of hydrogen peroxide (H2O2) caused an increase in cytosolic Ca2+ levels ([Ca2+]i) in both cell types. The [Ca2+]i rises diminished in the presence of U73122, a phospholipase C inhibitor, or Xestospongin C (XeC), an inhibitor for inositol-1,4,5-trisphosphate (IP3) receptors. Removal of Ca2+ from the bath also decreased the [Ca2+]i rises in response to H2O2. In addition, treatment of endothelial cells with H2O2 reduced the [Ca2+]i responses to subsequent challenge of ATP. The decreased [Ca2+]i responses to ATP were resulted from a pre-depletion of intracellular Ca2+ stores by H2O2. Interestingly, we also found that Ca2+ store depletion was more sensitive to H2O2 treatment in endothelial cells of mesenteric arteries than those of aortas. Hypoxanthine-xanthine oxidase (HX-XO) was also found to induce [Ca2+]i rises in both types of endothelial cells, the effect of which was mediated by superoxide anions and H2O2 but not by hydroxyl radical. H2O2 contribution in HX-XO-induced [Ca2+]i rises were more significant in endothelial cells from mesenteric arteries than those from aortas. In summary, H2O2 could induce store Ca2+ release via phospholipase C-IP3 pathway in endothelial cells. Resultant emptying of intracellular Ca2+ stores contributed to the reduced [Ca2+]i responses to subsequent ATP challenge. The [Ca2+]i responses were more sensitive to H2O2 in endothelial cells of small-sized arteries than those of large-sized arteries.
Arterial baroreceptors are mechanical sensors that detect blood pressure changes. It has long been suggested that the two arterial baroreceptors, aortic and carotid baroreceptors, have different pressure sensitivities. However, there is no consensus as to which of the arterial baroreceptors are more sensitive to changes in blood pressure. In the present study, we employed independent methods to compare the pressure sensitivity of the two arterial baroreceptors. Firstly, pressure-activated action potential firing was measured by whole-cell current clamp with a high-speed pressure clamp system in primary cultured baroreceptor neurons. The results show that aortic depressor neurons possessed a higher percentage of mechano-sensitive neurons. Furthermore, aortic baroreceptor neurons show a lower pressure threshold than that of carotid baroreceptor neurons. Secondly, uniaxial stretching of baroreceptor neurons, that mimics the forces exerted on blood vessels, elicited a larger increase in intracellular Ca2+ rise in aortic baroreceptor neurons than in carotid baroreceptor neurons. Thirdly, the pressure-induced action potential firing in the aortic depressor nerve recorded in vivo was also higher. The present study therefore provides for a basic physiological understanding on the pressure sensitivity of the two baroreceptor neurons and suggests that aortic baroreceptors have a higher pressure sensitivity than carotid baroreceptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.