Background: Virtually all horses are infected with helminth parasites. For some decades, the control of parasites of Swedish horses has been based on routine treatments with anthelmintics, often several times per year. Since anthelmintic resistance is becoming an increasing problem it is essential to develop more sustainable control strategies, which are adapted to different types of horse management. The aim of this study was to obtain information on practices used by Swedish horse owners for the control of endoparasites.
The objective of the study was to investigate different aspects on the efficacy of three anthelmintics on cyathostomin nematodes of Swedish horses. A faecal egg count reduction (FECR) test was performed on 26 farms. Horses were treated orally with recommended doses of ivermectin, pyrantel pamoate or fenbendazole. Faecal samples were collected on the day of deworming and 7, 14 and 21 days later. No resistance was shown against ivermectin; the FECR was constantly >99%. The effect of pyrantel was assessed as equivocal in 6 farms 14 days after treatment; the mean FECR was 99%. As many as 72% of the fenbendazole-treated groups met the criteria for resistance; the mean FECR was 86%, ranging from 56% to 100%. A re-investigation of two farms where pyrantel resistance had been suspected clearly revealed unsatisfactory efficacy of pyrantel on one of these farms; the FECR varied from 72% to 89%. Twenty-six of the horses previously dosed with pyrantel or fenbendazole, and which still excreted >/=150 eggs per gram of faeces 14 days after treatment, were dewormed with ivermectin and fenbendazole or pyrantel in order to eliminate the remaining cyathostomins. A total of 13 cyathostomin species were identified from horses that initially received fenbendazole and seven species were identified from pyrantel-treated individuals. The egg reappearance period (ERP) following treatment with ivermectin and pyrantel was investigated on two farms. The shortest ERP after ivermectin treatment was 8 weeks and after pyrantel was 5 weeks. We conclude that no substantial reversion to benzimidazole susceptibility had taken place, although these drugs have scarcely been used (<5%) in horses for the last 10 years. Pyrantel-resistant populations of cyathostomins are present on Swedish horse farms, but the overall efficacy of pyrantel is still acceptable.
Echinococcus multilocularis is a parasite that can cause alveolar echinococcosis disease. After the first positive finding of E. multilocularis in Sweden in 2011, a consulting group with representatives from relevant authorities was summoned. In this group, all relevant information was shared, strategies for information dissemination and any actions to be taken due to the finding of E. multilocularis were discussed and decided. The present paper describes the actions taken during 2011 and the results thereof, including surveillance in animals, risk assessment for humans to become infected and recommendations given to the public. Further discussion about whether the parasite was introduced, and if so, how, as well as possible future development of the infection in animals and humans in Sweden and future actions are included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.