We present a combined experimental and theoretical quantification of the adsorption enthalpies of seven organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate, hexane, and toluene) on graphene. Adsorption enthalpies were measured by inverse gas chromatography and ranged from -5.9 kcal/mol for dichloromethane to -13.5 kcal/mol for toluene. The strength of interaction between graphene and the organic molecules was estimated by density functional theory (PBE, B97D, M06-2X, and optB88-vdW), wave function theory (MP2, SCS(MI)-MP2, MP2.5, MP2.X, and CCSD(T)), and empirical calculations (OPLS-AA) using two graphene models: coronene and infinite graphene. Symmetry-adapted perturbation theory calculations indicated that the interactions were governed by London dispersive forces (amounting to ∼60% of attractive interactions), even for the polar molecules. The results also showed that the adsorption enthalpies were largely controlled by the interaction energy. Adsorption enthalpies obtained from ab initio molecular dynamics employing non-local optB88-vdW functional were in excellent agreement with the experimental data, indicating that the functional can cover physical phenomena behind adsorption of organic molecules on graphene sufficiently well.
Fluorographene (FG) is a two-dimensional graphene derivative with promising application potential; however, its reactivity is not understood. We have systematically explored its reactivity in vacuum and polar environments. The C-F bond dissociation energies for homo- and heterolytic cleavage are above 100 kcal/mol, but the barrier of SN2 substitution is significantly lower. For example, the experimentally determined activation barrier of the FG reaction with NaOH in acetone equals 14 ± 5 kcal/mol. The considerable reactivity of FG indicates that it is a viable precursor for the synthesis of graphene derivatives and cannot be regarded as a chemical counterpart of Teflon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.