Cytokinins (CKs) are a class of phytohormones affecting many aspects of plant growth and development. In the complex process of CK homeostasis in plants, N-glucosylation represents one of the essential metabolic pathways. Its products, CK N7- and N9-glucosides, have been largely overlooked in the past as irreversible and inactive CK products lacking any relevant physiological impact. In this work, we report a widespread distribution of CK N-glucosides across the plant kingdom proceeding from evolutionary older to younger plants with different proportions between N7- and N9-glucosides in the total CK pool. We show dramatic changes in their profiles as well as in expression levels of the UGT76C1 and UGT76C2 genes during Arabidopsis ontogenesis. We also demonstrate specific physiological effects of CK N-glucosides in CK bioassays including their antisenescent activities, inhibitory effects on root development, and activation of the CK signaling pathway visualized by the CK-responsive YFP reporter line, TCSv2::3XVENUS. Last but not least, we present the considerable impact of CK N7- and N9-glucosides on the expression of CK-related genes in maize and their stimulatory effects on CK oxidase/dehydrogenase activity in oats. Our findings revise the apparent irreversibility and inactivity of CK N7- and N9-glucosides and indicate their involvement in CK evolution while suggesting their unique function(s) in plants.
Cryostorage techniques have been developed to preserve the most valuable genotype from an endangered native population of Populus × canescens Aiton Sm. (grey poplar), which is located in the floodplain forest in the South Moravia region of the Czech Republic and which is difficult to propagate using cuttings. The prevailing genotype with valuable traits was selected by the simple sequence repeats method. This genotype was used to determine the most effective pre-cultivation conditions (cold hardening, and cold hardening combine with osmotic treatment) on dehydration tolerance and post-thaw recovery of the grey poplar shoot tips. The pre-cultivation and application of a modified plant vitrification solution 3 (PVS3) considerable reduced the freezable water content in shoot tips. Evaluation after eight weeks of regrowth revealed that simultaneous effect of cold and osmotic pre-treatments and application of PVS3 for 120 min enabled 93.3 ± 5.8 % recovery. The results emphasize the importance of the pre-cultivation conditions, which significantly improved the postthaw recovery of the grey poplar explants.
Phytohormones are crucial molecules regulating plant development and responses to environmental challenges, including abiotic stresses, microbial and insect attacks. Most notably, phytohormones play important roles in the biosynthesis of lignocellulosics. Jasmonates are involved in secondary growth and secondary metabolism, such as phenylpropanoids and lignin biosyntheses. At the physiological and molecular levels, the actions of phytohormones depend on subtle concentration changes, as well as antagonistic equilibria between two or more of these molecules. In this article, we investigate the consequences of jasmonic acid (JA) spraying on young hemp hypocotyls. First, we show that JA application results in changes in the monomeric composition of lignin. Second, we highlight that, five days after application, JA leads to an increase in salicylic acid (SA) content in hemp hypocotyls. These results are discussed in the light of the known antagonism between JA and SA at both the physiological and molecular levels.
ARTICLE HISTORY
Plant microgametogenesis involves stages leading to the progressive development of unicellular microspores into mature pollen. Despite the active and continuing interest in the study of male reproductive development, little is still known about the hormonomics at each ontogenetic stage. In this work, we characterized the profiles and dynamics of phytohormones during the process of microgametogenesis in four Nicotiana species (Nicotiana tabacum, Nicotiana alata, Nicotiana langsdorffii, and Nicotiana mutabilis). Taking advantage of advanced HPLC-ESI-MS/MS, twenty to thirty endogenous hormone derivatives were identified throughout pollen ontogenesis, including cytokinins, auxins, ABA and its derivatives, jasmonates, and phenolic compounds. The spectra of endogenous phytohormones changed dynamically during tobacco pollen ontogeny, indicating their important role in pollen growth and development. The different dynamics in the accumulation of endogenous phytohormones during pollen ontogenesis between N. tabacum (section Nicotiana) and the other three species (section Alatae) reflects their different phylogenetic positions and origin within the genus Nicotiana. We demonstrated the involvement of certain phytohormone forms, such as cis-zeatin- and methylthiol-type CKs, some derivatives of abscisic acid, phenylacetic and benzoic acids, in pollen development for the first time here. Our results suggest that unequal levels of endogenous hormones and the presence of specific derivatives may be characteristic for pollen development in different phylogenetic plant groups. These results represent the currently most comprehensive study of plant hormones during the process of pollen development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.