Summary Support Vector Machines with gapped k-mer kernels (gkm-SVMs) have been used to learn predictive models of regulatory DNA sequence. However, interpreting predictive sequence patterns learned by gkm-SVMs can be challenging. Existing interpretation methods such as deltaSVM, in-silico mutagenesis (ISM) or SHAP either do not scale well or make limiting assumptions about the model that can produce misleading results when the gkm kernel is combined with nonlinear kernels. Here, we propose GkmExplain: a computationally efficient feature attribution method for interpreting predictive sequence patterns from gkm-SVM models that has theoretical connections to the method of Integrated Gradients. Using simulated regulatory DNA sequences, we show that GkmExplain identifies predictive patterns with high accuracy while avoiding pitfalls of deltaSVM and ISM and being orders of magnitude more computationally efficient than SHAP. By applying GkmExplain and a recently developed motif discovery method called TF-MoDISco to gkm-SVM models trained on in vivo transcription factor (TF) binding data, we recover consolidated, non-redundant TF motifs. Mutation impact scores derived using GkmExplain consistently outperform deltaSVM and ISM at identifying regulatory genetic variants from gkm-SVM models of chromatin accessibility in lymphoblastoid cell-lines. Availability and implementation Code and example notebooks to reproduce results are at https://github.com/kundajelab/gkmexplain. Supplementary information Supplementary data are available at Bioinformatics online.
Deep neural networks and support vector machines have been shown to accurately predict genomewide signals of regulatory activity from raw DNA sequences. These models are appealing in part because they can learn predictive DNA sequence features without prior assumptions. Several methods such as in-silico mutagenesis, GradCAM, DeepLIFT, Integrated Gradients and GkmExplain have been developed to reveal these learned features. However, the behavior of these methods on regulatory genomic data remains an area of active research. Although prior work has benchmarked these methods on simulated datasets with known ground-truth motifs, these simulations employed highly simplified regulatory logic that is not representative of the genome. In this work, we propose a novel pipeline for designing simulated data that comes closer to modeling the complexity of regulatory genomic DNA. We apply the pipeline to build simulated datasets based on publicly-available chromatin accessibility experiments and use these datasets to benchmark different interpretation methods based on their ability to identify ground-truth motifs. We find that a GradCAM-based method, which was reported to perform well on a more simplified dataset, does not do well on this dataset (particularly when using an architecture with shorter convolutional kernels in the first layer), and we theoretically show that this is expected based on the nature of regulatory genomic data. We also show that Integrated Gradients sometimes performs worse than gradient-times-input, likely owing to its linear interpolation path. We additionally explore the impact of user-defined settings on the interpretation methods, such as the choice of "reference"/"baseline", and identify recommended settings for genomics. Our analysis suggests several promising directions for future research on these model interpretation methods. Code and links to data are available at https://github.com/kundajelab/interpret-benchmark.
Support VectorMachines with gapped k-mer kernels (gkm-SVMs) have been used to learn predictive models of regulatory DNA sequence. However, interpreting predictive sequence patterns learned by gkm-SVMs can be challenging. Existing interpretation methods such as deltaSVM, in-silico mutagenesis (ISM), or SHAP either do not scale well or make limiting assumptions about the model that can produce misleading results when the gkm kernel is combined with nonlinear kernels. Here, we propose gkmexplain: a novel approach inspired by the method of Integrated Gradients for interpreting gkm-SVM models. Using simulated regulatory DNA sequences, we show that gkmexplain identifies predictive patterns with high accuracy while avoiding pitfalls of deltaSVM and ISM and being orders of magnitude more computationally efficient than SHAP. We use a novel motif discovery method called TF-MoDISco to recover consolidated TF motifs from gkm-SVM models of in vivo TF binding by aggregating predictive patterns identified by gkmexplain. Finally, we find that mutation impact scores derived through gkmexplain using gkm-SVM models of chromatin accessibility in lymphoblastoid cell-lines consistently outperform deltaSVM and ISM at identifying regulatory genetic variants (dsQTLs). Code and example notebooks replicating the workflow are available at https://github.com/kundajelab/gkmexplain. Explanatory videos available at http://bit.ly/gkmexplainvids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.