BackgroundImmunohistochemical staining for mismatch repair proteins is efficient and widely used to identify mismatch repair defective tumors. The tumors typically show uniform and widespread loss of MMR protein staining. We identified and characterized colorectal cancers with alternative, heterogenous mismatch repair protein staining in order to delineate expression patterns and underlying mechanisms.MethodsHeterogenous staining patterns that affected at least one of the mismatch repair proteins MLH1, PMS2, MSH2 and MSH6 were identified in 14 colorectal cancers. Based on alternative expression patterns macro-dissected and micro-dissected tumor areas were separately analyzed for microsatellite instability and MLH1 promoter methylation.ResultsHeterogenous retained/lost mismatch repair protein expression could be classified as intraglandular (within or in-between glandular formations), clonal (in whole glands or groups of glands) and compartmental (in larger tumor areas/compartments or in between different tumor blocks). These patterns coexisted in 9/14 tumors and in the majority of the tumors correlated with differences in microsatellite instability/MLH1 methylation status.ConclusionsHeterogenous mismatch repair status can be demonstrated in colorectal cancer. Though rare, attention to this phenomenon is recommended since it corresponds to differences in mismatch repair status that are relevant for correct classification.Virtual SlidesThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1771940323126788
BackgroundA possible role for prostate cancer in Lynch syndrome has been debated based on observations of mismatch-repair defective tumors and reports of an increased risk of prostate cancer in mutation carriers. Potential inclusion of prostate cancer in the Lynch syndrome tumor spectrum is relevant for family classification, risk estimates and surveillance recommendations in mutation carriers.MethodsWe used the population-based Danish HNPCC-register to identify all prostate cancers that developed in mutation carriers and in their first-degree relatives from 288 Lynch syndrome families. The tumors were evaluated for clinicopathologic features and mismatch-repair status, and the cumulative risk of prostate cancer was determined.ResultsIn total, 28 prostate cancers developed in 16 mutation carriers and in 12 first-degree relatives at a median age of 63 years. The majority of the tumors were high-grade tumors with Gleason scores 8–10. Prostate cancer was associated with mutations in MSH2, MLH1 and MSH6 with loss of the respective mismatch repair protein in 69 % of the tumors, though a MSI-high phenotype was restricted to 13 % of the tumors. The cumulative risk of prostate cancer at age 70 was 3.7 % (95 % CI: 2.3–4.9).ConclusionWe provide evidence to link prostate cancer to Lynch syndrome through demonstration of MMR defective tumors and an increased risk of the disease, which suggests that prostate cancer should be considered in the diagnostic work-up of Lynch syndrome.
Hereditary syndromes causing colorectal cancer include both polyposis and non-polyposis syndromes. Overlapping phenotypes between the syndromes have been recognized and this make targeted molecular testing for single genes less favorable, instead there is a gaining interest for multi-gene panel-based approaches detecting both SNVs, indels and CNVs in the same assay. We applied a panel including 19 CRC susceptibility genes to 91 individuals of six phenotypic subgroups. Targeted NGS-based sequencing of the whole gene regions including introns of the 19 genes was used. The individuals had a family history of CRC or had a phenotype consistent with a known CRC syndrome. The purpose of the study was to demonstrate the diagnostic difficulties linked to genotype-phenotype diversity and the benefits of using a gene panel. Pathogenicity classification was carried out on 46 detected variants. In total we detected sixteen pathogenic or likely pathogenic variants and 30 variants of unknown clinical significance. Four of the pathogenic or likely pathogenic variants were found in BMPR1A in patients with unexplained familial adenomatous polyposis or atypical adenomatous polyposis, which extends the genotype-phenotype spectrum for this gene. Nine patients had more than one variant remaining after the filtration, including three with truncating mutations in BMPR1A, PMS2 and AXIN2. CNVs were found in three patients, in upstream regions of SMAD4, MSH3 and CTNNB1, and one additional individual harbored a 24.2 kb duplication in CDH1 intron1.Electronic supplementary materialThe online version of this article (doi:10.1007/s10689-016-9934-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.