The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. <br><br> Investigations of deep-sea habitats and their fauna began in the late 19th Century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 27 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st Century. However, for most of these habitats, the global area covered is unknown or has been only very roughly estimated; an even smaller – indeed, minimal – proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation, thus, shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as <i>inter alia</i> hydrothermal vents or cold seeps, where chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of deep-sea communities, which are adapted to low energy availability. In most of the heterotrophic deep-sea settings, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs) and chemoautotrophy through symbiotic relationships is dominant in reducing habitats. <br>...
The deep sea (>200 m depth) encompasses >95% of the world's ocean volume and represents the largest and least explored biome on Earth (<0.0001% of its surface). It also provides critical climate regulation and other ecosystem services. New species and ecosystems are continuously being discovered in the deep oceans, but commercial fisheries, deep-sea mining, and offshore oil and gas extractions, along with pollution and global change effects, threaten this vast under-explored frontier region. The future of both benthic and pelagic deep-sea ecosystems depends upon effective ecosystembased management strategies enhancing deep-sea conservation, yet we lack consensus on monitoring of the biological and ecological variables that reflect ecosystem status and are needed to support management and environmental decisions at a global scale. Here, we present and discuss the results of an Expert Elicitation of more than 110 deep-sea scientists to prioritize variables and parameters for the future of deep-sea monitoring. We identified five main scientific pillars that need to be further investigated for deep-ocean conservation: i) species and habitat biodiversity, ii) ecosystem function; iii) ecosystem health, impacts, and risk assessment; iv) climate change impacts, the adaptation and evolution of deep-sea life, and v) deep-sea ecosystem conservation. As observing and monitoring can provide the necessary scientific framework for scientists and policy makers to implement effective deep-sea conservation strategies at a global scale, the proposed variables should be further studied in the context of available sensor and other advanced technologies, which are becoming increasingly available.
Submarine canyons are major geomorphic features of continental margins around the world. Several recent multidisciplinary projects focused on the study of canyons have considerably increased our understanding of their ecological role, the goods, and services they provide to human populations, and the impacts that human activities have on their overall ecological condition. Pressures from human activities include fishing, dumping of land-based mine tailings, and oil and gas extraction. Moreover, hydrodynamic processes of canyons enhance the down-canyon transport of litter. The effects of climate change may modify the intensity of currents. This potential hydrographic change is predicted to impact the structure and functioning of canyon communities as well as affect nutrient supply to the deep-ocean ecosystem. This review not only identifies the ecological status of canyons, and current and future issues for canyon conservation, but also highlights the need for a better understanding of anthropogenic impacts on canyon ecosystems and proposes other research required to inform management measures to protect canyon ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.