Metal exposure is associated with several toxic effects; herein, we review the toxicity mechanisms of cadmium, mercury, arsenic, lead, aluminum, chromium, iron, copper, nickel, cobalt, vanadium, and molybdenum as these processes relate to free radical generation. Free radicals can be generated in cells due to a wide variety of exogenous and endogenous processes, causing modifications in DNA bases, enhancing lipid peroxidation, and altering calcium and sulfhydryl homeostasis. Melatonin, an ubiquitous and pleiotropic molecule, exerts efficient protection against oxidative stress and ameliorates oxidative/nitrosative damage by a variety of mechanisms. Also, melatonin has a chelating property which may contribute in reducing metal-induced toxicity as we postulate here. The aim of this review was to highlight the protective role of melatonin in counteracting metal-induced free radical generation. Understanding the physicochemical insights of melatonin related to the free radical scavenging activity and the stimulation of antioxidative enzymes is of critical importance for the development of novel therapeutic strategies against the toxic action of these metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.