Cyclin-dependent kinases (CDKs) are an important and emerging class of drug targets for which many smallmolecule inhibitors have been developed. However, there is often insufficient data available on the selectivity of CDK inhibitors (CDKi) to attribute the effects on the presumed target CDK to these inhibitors. Here, we highlight discrepancies between the kinase selectivity of CDKi and the phenotype exhibited; we evaluated 31 CDKi (claimed to target CDK1−4) for activity toward CDKs 1, 2, 4, 5, 7, 9 and for effects on the cell cycle. Our results suggest that most CDKi should be reclassified as pan-selective and should not be used as a tool. In addition, some compounds did not even inhibit CDKs as their primary cellular targets; for example, NU6140 showed potent inhibition of Aurora kinases. We also established an online database of commercially available CDKi for critical evaluation of their utility as molecular probes. Our results should help researchers select the most relevant chemical tools for their specific applications.
The inhibition of overactive CDKs during cancer remains an important strategy in cancer drug development. We synthesized and screened a novel series of 2-substituted-6-biarylmethylamino-9-cyclopentylpurine derivatives for improved CDK inhibitory activity and antiproliferative effects. One of the most potent compounds, 6b, exhibited strong cytotoxicity in the human melanoma cell line G361 that correlated with robust CDK1 and CDK2 inhibition and caspase activation. In silico modeling of 6b in the active site of CDK2 revealed a high interaction energy, which we believe is due to the 6-heterobiarylmethylamino substitution of the purine moiety.
FLT3 tyrosine kinase is a potential drug target in acute myeloid leukemia (AML) because patients with FLT3-ITD mutations respond poorly to standard cytotoxic agents and there is a clear link between the disease and the oncogenic properties of FLT3. We present novel 2,6,9-trisubstituted purine derivatives with potent FLT3 inhibitory activity. The lead compound 7d displays nanomolar activity in biochemical assays and selectively blocks proliferation of AML cell lines harboring FLT3-ITD mutations, whereas other transformed and normal human cells are several orders of magnitude less sensitive. The MV4-11 cells treated with 7d suppressed the phosphorylation of FLT3 and its downstream signaling pathways, with subsequent G1 cell cycle arrest and apoptosis. Additionally, a single dose of 7d in mice with subcutaneous MV4-11 xenografts caused sustained inhibition of FLT3 and STAT5 phosphorylation over 48 h, in contrast to the shorter effect observed after administration of the reference FLT3 inhibitor quizartinib.
Treatment options for hepatocellular carcinoma using chemotherapeutics at intermediate and advanced stages of disease are limited as patients most rapidly escape from therapy and succumb to disease progression. Mechanisms of the hepatic xenobiotic metabolism are mostly involved in providing chemoresistance to therapeutic compounds. Given the fact that the aberrant activation of cyclin-dependent kinases (CDK) is frequently observed in hepatocellular carcinomas, we focused on the efficacy of the novel compounds BA-12 and BP-14 that antagonize CDK1/2/5/7 and CDK9. Inhibition of those CDKs in human hepatocellular carcinoma cell lines reduced the clonogenicity by arresting cells in S-G 2 and G 2 -M phase of the cell cycle and inducing apoptosis. In contrast, primary human hepatocytes failed to show cytotoxicity and apoptosis. No loss of chemosensitivity was observed in hepatocellular carcinoma cells after long-term exposure to inhibitors. In vivo, treatment of xenografted human hepatocellular carcinomas with BA-12 or BP-14 effectively repressed tumor formation. Moreover, BA-12 or BP-14 significantly diminished diethylnitrosamine (DEN)-induced hepatoma development in mice. These data show that BA-12 or BP-14 exhibit strong antitumorigenic effects in the absence of chemoresistance, resulting in a superior efficacy compared with currently used chemotherapeutics in hepatocellular carcinomas. Mol Cancer Ther; 12(10); 1947-57. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.