A site-dependent spectral density system-bath model of the Fenna-Matthews-Olsen (FMO) pigment-protein complex is developed using results from ground-state molecular mechanics simulations together with a partial charge difference model for how the long-range contributions to the chromophore excitation energies fluctuate with environmental configuration. A discussion of how best to consistently process the chromophore excitation energy fluctuation correlation functions calculated in these classical simulations to obtain reliable site-dependent spectral densities is presented. The calculations reveal that chromophores that are close to the protein-water interface can experience strongly dissipative environmental interactions characterized by reorganization energies that can be as much as 2-3 times those of chromophores that are buried deep in the hydrophobic protein scaffolding. Using a linearized density matrix quantum propagation method, we demonstrate that the inhomogeneous system-bath model obtained from our site-dependent spectral density calculations gives results consistent with experimental dissipation and dephasing rates. Moreover, we show that this model can simultaneously enhance the energy-transfer rate and extend the decoherence time. Finally, we explore the influence of initially exciting different chromophores and mutating local environments on energy transfer through the network. These studies suggest that different pathways, selected by varying initial photoexcitation, can exhibit significantly different relaxation times depending on whether the energy-transfer path involves chromophores at the protein-solvent interface or if all chromophores in the pathway are buried in the protein.
The light harvesting 2 (LH2) antenna complex from purple photosynthetic bacteria is an efficient natural excitation energy carrier with well-known symmetric structure, but the molecular level design principle governing its structure-function relationship is unknown. Our all-atomistic simulations of nonnatural analogues of LH2 as well as those of a natural LH2 suggest that nonnatural sizes of LH2-like complexes could be built. However, stable and consistent hydrogen bonding (HB) between bacteriochlorophyll and the protein is shown to be possible only near naturally occurring sizes, leading to significantly smaller disorder than for nonnatural ones. Extensive quantum calculations of intercomplex exciton transfer dynamics, sampled for a large set of disorder, reveal that taming the negative effect of disorder through a reliable HB as well as quantum delocalization of the exciton is a critical mechanism that makes LH2 highly functional, which also explains why the natural sizes of LH2 are indeed optimal.
Fibril formation from amyloidogenic peptides is a hallmark of a wide range of diseases, including Alzheimer's disease and type II diabetes. Characterization of the aggregation process should include intrinsic factors, such as sequence variation, and extrinsic factors, such as crowding effects. To this end, we examined the interactions of dimers composed of residues 20-29 of human islet amyloid polypeptide (hIAPP), which form fibrils in vitro, and the nonamyloidogenic rat IAPP (rIAPP) using molecular dynamics simulations modeled at different peptide concentrations. There is a substantial free energy barrier to unbind the hIAPP dimer whereas no barrier exists for separating the rIAPP dimer. The profound differences in the free energy landscapes of the rIAPP and hIAPP dimers explains the lack of fibril formation in hIAPP upon substitution of the C-terminal residues by proline. Enhancing the extent of crowding has a substantial effect on both the barrier for separating a hIAPP beta-sheet dimer and the formation of potential beta-sheet nucleation sites. Our results show that the propensity for forming nucleation sites is dependent not only on the amino-acid sequence but also on the context in which it is found.
Light harvesting 2 (LH2) complex is the primary component of the photosynthetic unit of purple bacteria that is responsible for harvesting and relaying excitons. The electronic absorption line shape of LH2 contains two major bands at 800 and 850 nm wavelength regions. Under low light conditions, some species of purple bacteria replace LH2 with light harvesting 3 (LH3), a variant form with almost the same structure as the former but with distinctively different spectral features. The major difference between the absorption line shapes of LH2 and LH3 is the shift of the 850 nm band of the former to a new 820 nm region. The microscopic origin of this difference has been the subject of some theoretical/computational investigations. However, the genuine molecular level source of such a difference is not clearly understood yet. This work reports a comprehensive computational study of LH2 and LH3 complexes so as to clarify different molecular level features of LH2 and LH3 complexes and to construct simple exciton-bath models with a common form. All-atomistic molecular dynamics simulations of both LH2 and LH3 complexes provide detailed molecular level structural differences of bacteriochlorophylls (BChls) in the two complexes, in particular, in their patterns of hydrogen bonding (HB) and torsional angles of the acetyl group. Time-dependent density functional theory calculation of the excitation energies of BChls for structures sampled from the MD simulations suggests that the observed differences in the HB and torsional angles cannot fully account for the experimentally observed spectral shift of LH3. Potential sources that can explain the actual spectral shift of LH3 are discussed, and their magnitudes are assessed through fitting of experimental line shapes. These results demonstrate the feasibility of developing simple exciton-bath models for both LH2 and LH3, which can be employed for large-scale exciton quantum dynamics in their aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.