HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase (HMGR) catalyzes the committed step in cholesterol biosynthesis. Statins are HMGR inhibitors with inhibition constant values in the nanomolar range that effectively lower serum cholesterol levels and are widely prescribed in the treatment of hypercholesterolemia. We have determined structures of the catalytic portion of human HMGR complexed with six different statins. The statins occupy a portion of the binding site of HMG-CoA, thus blocking access of this substrate to the active site. Near the carboxyl terminus of HMGR, several catalytically relevant residues are disordered in the enzyme-statin complexes. If these residues were not flexible, they would sterically hinder statin binding.
Degradation of host hemoglobin by the human malaria parasitePlasmodium falciparum is a massive metabolic process. What role this degradation plays and whether it is essential for parasite survival have not been established, nor have the roles of the various degradative enzymes been clearly defined. We report that P. falciparum can grow in medium containing a single amino acid (isoleucine, the only amino acid missing from human hemoglobin). In this medium, growth of hemoglobin-degrading enzyme gene knockout lines (missing falcipain-2 and plasmepsins alone or in combination) is impaired. Blockade of plasmepsins with the potent inhibitor pepstatin A has a minimal effect on WT parasite growth but kills falcipain-2 knockout parasites at low concentrations and is even more potent on falcipain-2, plasmepsin I and IV triple knockout parasites. We conclude that: (i ) hemoglobin degradation is necessary for parasite survival; (ii ) hemoglobin degradation is sufficient to supply most of the parasite's amino acid requirements; (iii ) external amino acid acquisition and hemoglobin digestion are partially redundant nutrient pathways; (iv) hemoglobin degradation uses dual protease families with overlapping function; and (v) hemoglobin-degrading plasmepsins are not promising drug targets.hemoglobin ͉ malaria ͉ protease
The human malaria parasite Plasmodium falciparum is auxotrophic for most amino acids. Its amino acid needs are met largely through the degradation of host erythrocyte hemoglobin; however the parasite must acquire isoleucine exogenously, because this amino acid is not present in adult human hemoglobin. We report that when isoleucine is withdrawn from the culture medium of intraerythrocytic P. falciparum, the parasite slows its metabolism and progresses through its developmental cycle at a reduced rate. Isoleucine-starved parasites remain viable for 72 h and resume rapid growth upon resupplementation. Protein degradation during starvation is important for maintenance of this hibernatory state. Microarray analysis of starved parasites revealed a 60% decrease in the rate of progression through the normal transcriptional program but no other apparent stress response. Plasmodium parasites do not possess a TOR nutrient-sensing pathway and have only a rudimentary amino acid starvation-sensing eukaryotic initiation factor 2α (eIF2α) stress response. Isoleucine deprivation results in GCN2-mediated phosphorylation of eIF2α, but kinase-knockout clones still are able to hibernate and recover, indicating that this pathway does not directly promote survival during isoleucine starvation. We conclude that P. falciparum, in the absence of canonical eukaryotic nutrient stress-response pathways, can cope with an inconsistent bloodstream amino acid supply by hibernating and waiting for more nutrient to be provided.protease | artemesinin | autophagy
Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target–inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite.
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)catalyzes the formation of mevalonate, the committed step in the biosynthesis of sterols and isoprenoids. The activity of HMGR is controlled through synthesis, degradation and phosphorylation to maintain the concentration of mevalonate-derived products. In addition to the physiological regulation of HMGR, the human enzyme has been targeted successfully by drugs in the clinical treatment of high serum cholesterol levels. Three crystal structures of the catalytic portion of human HMGR in complexes with HMG-CoA, with HMG and CoA, and with HMG, CoA and NADP ⍣ , provide a detailed view of the enzyme active site. Catalytic portions of human HMGR form tight tetramers. The crystal structure explains the influence of the enzyme's oligomeric state on the activity and suggests a mechanism for cholesterol sensing. The active site architecture of human HMGR is different from that of bacterial HMGR; this may explain why binding of HMGR inhibitors to bacterial HMGRs has not been reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.