-methyladenine (mA) is found on many eukaryotic RNAs including mRNAs. mA modification has been implicated in mRNA stability and turnover, localization, or translation efficiency. A heterodimeric enzyme complex composed of METTL3 and METTL14 generates mA on mRNAs. METTL3/14 is found in the nucleus where it is localized to nuclear speckles and the splicing regulator WTAP is required for this distinct nuclear localization pattern. Although recent crystal structures revealed how the catalytic MT-A70 domains of METTL3 and METTL14 interact with each other, a more global architecture including WTAP and RNA interactions has not been reported so far. Here, we used recombinant proteins and mapped binding surfaces within the METTL3/14-WTAP complex. Furthermore, we identify nuclear localization signals and identify phosphorylation sites on the endogenous proteins. Using an in vitro methylation assay, we confirm that monomeric METTL3 is soluble and inactive while the catalytic center of METTL14 is degenerated and thus also inactive. In addition, we show that the C-terminal RGG repeats of METTL14 are required for METTL3/14 activity by contributing to RNA substrate binding. Our biochemical work identifies characteristic features of METTL3/14-WTAP and reveals novel insight into the overall architecture of this important enzyme complex.
cOverexpression of the multidrug efflux pump MDR1 is one mechanism by which the pathogenic yeast Candida albicans develops resistance to the antifungal drug fluconazole. The constitutive upregulation of MDR1 in fluconazole-resistant, clinical C. albicans isolates is caused by gain-of-function mutations in the zinc cluster transcription factor Mrr1. It has been suggested that Mrr1 activates MDR1 transcription by recruiting Ada2, a subunit of the SAGA/ADA coactivator complex. However, MDR1 expression is also regulated by the bZIP transcription factor Cap1, which mediates the oxidative stress response in C. albicans. Here, we show that a hyperactive Mrr1 containing a gain-of-function mutation promotes MDR1 overexpression independently of Ada2. In contrast, a C-terminally truncated, hyperactive Cap1 caused MDR1 overexpression in a wild-type strain but only weakly in mutants lacking ADA2. In the presence of benomyl or H 2 O 2 , compounds that induce MDR1 expression in an Mrr1-and Cap1-dependent fashion, MDR1 was upregulated with the same efficiency in wild-type and ada2⌬ cells. These results indicate that Cap1, but not Mrr1, recruits Ada2 to the MDR1 promoter to induce the expression of this multidrug efflux pump and that Ada2 is not required for MDR1 overexpression in fluconazole-resistant C. albicans strains containing gain-of-function mutations in Mrr1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.